PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Periodic signal detection with using duffing system poincare map analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article the periodic signal detection method on the base of Duffing system chaotic oscillations analysis is presented. This work is a development of the chaos-based signal detection technique. Generally, chaos-based signal detection is the detection of chaotic-to-periodic state transition under input periodic component influence. If the in¬put periodic component reaches certain threshold value, the system transforms from chaotic state to periodic state. The Duffing-type chaotic systems are often used for such a signal detection purpose because of their ability to work in chaotic state for a long time and relatively simple realization. The main advantage of chaos-based signal detection methods is the utilization of chaotic system sensitivity to weak signals. But such methods are not used in practice because of the chaotic system state control problems. The method presented does not require an exact system state control. The Duffing system works continuously in chaotic state and the periodic signal detection process is based on the analysis of Duffing system Poincare map fractal structure. This structure does not depend on noise, and therefore the minimum input signal-to-noise ratio required for periodic signal detection is not limited by chaotic system state control tolerance.
Twórcy
autor
  • Department of Radio Engineering and Communications, Faculty of Programming, Computer and Telecommunication Systems, Khmelnytskyi National University, Khmelnytskyi, Ukraine
autor
autor
Bibliografia
  • 1. Birx D. I. Chaotic oscillators and CMFFNS for signal detection in noise environments. IEEE International Joint Conference on Neural Networks, Vol. 22, 1992, 881–888.
  • 2. Jalilvand A., Fotoohabadi H. The Application of Duffing Oscillator in Weak Signal Detection. ECTI Transactions on Electrical Eng., Electronics, and Communications, 9(1), 2011, 1–6.
  • 3. Li Yue, Yang Baojun. Chaotic system for the detection of periodic signals under the background of strong noise. Chinese Science Bulletin, 48(5), 2003, 508–510.
  • 4. Dai Y. The Weak Signal Detection Method and Instrument. The National Defence Industrial Publishing House, Beijing 1994, 265–278.
  • 5. Liyun S., Qian Y., Yuli Z., Jiaojun L. Noise Immunity of Duffing Oscillator and its Applications in Weak UWB Signal Detection. Journal of Networks, 7(3), 2012, 540–546.
  • 6. Thomson J.M.T., Stewart H.B. Nonlinear Dynamics and Chaos. John Wiley & Sons, Ltd, Baffins Lane, Chichester, West Sussex, England 2002.
  • 7. Ott E. Chaos in Dynamical Systems. Cambridge University Press, Cambridge 1993.
  • 8. Moon F.C. Chaotic Vibrations. An Introduction for Applied Scientists and Engineers. John Wiley & Sons, Inc., Hoboken, New Jersey 2004.
  • 9. McLachlan N.W. Ordinary Non-linear Differential Equations in Engineering and Physical Sciences, 2nd Ed. Clarendon, Oxford 1958.
  • 10. Armitage J.V. and Eberlein W.F. Elliptic Functions. LMS 67, Cambridge 2006.
  • 11. Ferrer S., Lara M., Families of Canonical Transformations by Hamilton-Jacobi-Poincare Equation. Application to Rotational and Orbital Motion, Journal of Geometric Mechanics, Vol. 2, 2010, 223-241.
  • 12. Wang Guanyu, Chen Dajun, Lin Jianya, Chen Xing. The application of chaotic oscillators to weak signal detection. IEEE Transactions on industrial electronics, 46(20), 1999, 440-443.
  • 13. Yang Jianhong, Zhang Rencheng, Fang Huaiying, et al. Application of Duffing Oscillator signal detection to arcing faults protection. Automation of Electric Power System, 30(24), 2006, 69-72.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad809341-954c-4d85-a4b4-1698e8c0d7ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.