PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic analysis and experiment of underactuated double-pendulum anti-swing device for ship-mounted jib cranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a three degrees of freedom parallel anti-swing method by the main and auxiliary cables to address the problems related to underactuated double-pendulum anti-swing for a ship-mounted jib crane. By analysing the dynamic coupling relationship between the swing of the hook and the payload, it seeks to establish an accurate dynamic model of the anti-swing device under the ship’s rolling and pitching conditions, and discusses the influence of ship excitation, the crane state, load posture and anti-swing parameters on the in-plane and out-of-plane swing angles. The analysis shows that the primary pendulum reduces the in-plane angle by 90% and the out-of-plane angle by 80%, the in-plane angle of the secondary pendulum is reduced by 90%, and the out-of-plane angle is reduced by 80%. The reliability of the simulation data is verified through experiments.
Rocznik
Tom
Strony
145--154
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • College of Marine Engineering Dalian Maritime University Dalian, 116026 China
  • College of shipping, Bohai University, Jinzhou, China
  • Bohai Shipbuilding Heavy Industry Co. Ltd, China
autor
  • College of Marine Engineering Dalian Maritime University Dalian, 116026 China
  • College of Marine Engineering Dalian Maritime University Dalian, 116026 China
autor
  • College of Marine Engineering Dalian Maritime University Dalian, 116026 China
autor
  • College of Marine Engineering Dalian Maritime University Dalian, 116026 China
autor
  • College of Marine Engineering Dalian Maritime University Dalian, 116026 China
autor
  • Bohai Shipbuilding Heavy Industry Co. Ltd, China
Bibliografia
  • 1. E. M. Abdel-Rahman, A. H. Nayfeh, Z. N. Masoud, “Dynamics and control of cranes: A review,” Journal of Vibration and Control, vol. 9, no. (7), pp. 863‒908, 2003, doi:10.1177/1077546303009007007.
  • 2. Chuanzhi Zhu, Guoping Miu, Theory of ships motion on waves. Shanghai: Shanghai Jiaotong University Press, 2019.
  • 3. Shenghai Wang, Zhaopeng Ren, Guoliang Jin, Haiquan Chen, “Modeling and Analysis of Offshore Crane Retrofitted with Cable-Driven Inverted Tetrahedron Mechanism,” IEEE Access, vol. 9, pp. 86132‒86143, 2021, doi:
  • 4. 10.1109/ACCESS.2021.3063792.
  • 5. W. Z. Schulz, M. Musatow, C. Jiang, et al., Skin-to-skin replenishment. Proceedings of the ASNE Symposium on Expeditionary Force Projection, 2008.
  • 6. M. I. Solihin, A. Legowo, R. Akmeliawati, et al., Robust PID anti-swing control of automatic gantry crane based on Kharitonov’s stability. In: 2009 4th IEEE Conference on Industrial Electronics and Applications. IEEE, pp. 275–280, 2009.
  • 7. M. Adeli, H. Zarabadipour, S. H. Zarabadi, M. A. Shoorehdeli, Anti-swing control for a double-pendulum-type overhead crane via parallel distributed fuzzy LQR controller combined with genetic fuzzy rule set selection. In: 2011 IEEE International Conference on Control System, Computing and Engineering. IEEE, pp. 306–311, 2011.
  • 8. Q. H. Ngo, N. P. Nguyen, C. N. Nguyen, T. H. Tran, Q. P. Ha, “Fuzzy sliding mode control of an offshore container crane,” Ocean Eng., vol. 140, pp. 125–134, 2017, doi: 10.1016/j.oceaneng.2017.05.019.
  • 9. Y. Qian, Y. Fang, B. Lu, “Adaptive robust tracking control for an offshore ship-mounted crane subject to unmatched sea wave disturbances,” Mech. Syst. Signal Process., vol. 114, pp. 556–570, 2018, doi:10.1016/j.ymssp.2018.05.009.
  • 10. G.-H. Kim, P.-T. Pham, Q. H. Ngo, Q. C. Nguyen, “Neural network-based robust anti-sway control of an industrial crane subjected to hoisting dynamics and uncertain hydrodynamic forces,” Int. J. Control Autom. Syst., vol. 19, pp. 1953‒1961, 2021, doi:10.1007/s12555-020-0333-9.
  • 11. R. Buczkowski and B. Żyliński, “Finite element fatigue analysis of unsupported crane,” Polish Marit. Res., vol. 28, no. 1, 2021, doi: 10.2478/pomr-2021-0012.
  • 12. A. Aksjonov, V. Vodovozov, and E. Pellenkov, “Three-dimensional crane modelling and control using Euler-Lagrange state-space approach and anti-swing fuzzy logic,” Electr., Control Commun. Eng., vol. 9, no. 1, pp. 5‒13, Dec. 2015, doi: 10.1515/ecce-2015-0006.
  • 13. Y. G. Sun, H. Y. Qiang, J. Q. Xu, and D. S. Dong, “The nonlinear dynamics and anti-sway tracking control for offshore container crane on a mobile harbor,” J. Mar. Sci. Technol. - Taiwan, Process., vol. 25, no. 6, pp. 656‒665, 2017, doi:10.6119/JMST-017-1226-05.
  • 14. J. Huang, E. Maleki, W. Singhose, “Dynamics and swing control of mobile boom cranes subject to wind disturbances,” IET Control Theory and Applications, vol. 7, no. 9, pp. 1187‒1195, 2013, doi:10.1049/iet-cta.2012.0957.
  • 15. R. Miranda-Colorado, “Robust observer-based anti-swing control of 2D-crane systems with load hoisting-lowering,” Nonlinear Dynamics, vol. 104, no. 4, pp.1‒16r, 2021, doi:10.1007/s11071-021-06443-x.
  • 16. K. J. Jensen, M. K. Ebbesen, M. R. Hansen, “Anti-swing control of a hydraulic loader crane with a hanging load,” Mechatronics, vol. 77, 2021, doi: 10.1016/j.mechatronics. 2021. 102599.
  • 17. H. T. Shi, J. Q. Huang, X. Bai, X. Huang, J. Sun, “Nonlinear Anti-swing Control of Underactuated Tower Crane Based on Improved Energy Function,” Int. J. Control Autom. Syst., vol. 19, pp. 3967‒3982, 2021, doi:10.1007/s12555-020-0292-1.
  • 18. H. Y. Qiang, Y. G. Sun, J. C. Lyu, D. S. Dong, “Anti-Sway and Positioning Adaptive Control of a Double-Pendulum Effect Crane System with Neural Network Compensation,” Front. Robot. AI, vol. 8, 2021, doi:10.3389/frobt.2021.639734.
  • 19. Zhengru Ren, A. S. Verma, B. Ataei, K. H. Halse, H. P. Hildre, “Model-free anti-swing control of complex-shaped payload with offshore floating cranes and a large number of lift wires,” Ocean Engineering, vol. 228, pp. 1‒13, 2021, doi:10.1016/j.oceaneng.2021.108868.
  • 20. Haiquan Chen, Guoliang Jin, Yang Ji, Anqi Niu, Shenghai Wang, Yuqing Sun, “Simulation and experimental research on constant tension control of traction cable-type anti-swing device for ship-mounted cranes,” Shipbuilding of China, vol. 62, no. 2, pp. 211‒223, 2021.
  • 21. Shenghai Wang, Junjie Wu, Haiquan Chen, Yang Ji, Yuqing Sun, “Dynamic analysis and experiment of the mechanical anti-swing device for ship-mounted cranes,” Journal of Harbin Engineering University, vol. 40, no. 11, pp. 1858- 1864, 2019.
  • 22. J. Ginsberg, Engineering Dynamics. New York, NY, USA: Cambridge Univ. Press, pp. 99‒157, 2008.
  • 23. L. J. Love, J. F. Jansen, F. G. Pin, Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems, UNT Digital Laboratory, 2003, doi:10.2172/885873.
Uwagi
Uwaga: Faktycznie jest 22 poz. bibliografii, gdyż poz. nr 4 jest faktycznie numerem doi. pozycji nr 3 Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad792a99-0ebe-4b62-95e8-4fcb3d28c248
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.