Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In present study, Fe-22Cr-4.5Al oxide dispersion strengthened ferritic alloys were fabricated using a pre-alloyed powder with different minor alloying elements, and their microstructures and tensile properties were investigated to develop the advanced structural materials for high temperature service components. Planetary-typed mechanical alloying and uniaxial hot pressing processes were employed to fabricate the Fe-Cr-Al oxide dispersion strengthened ferritic alloys. Microstructural observation revealed that oxide dispersion strengthened ferritic alloys with Ti, Zr additions presented extremely fine micro-grains with a high number density of nano-scaled oxide particles which uniformly distributed in micro-grains and on the grain boundaries. These oxide particles were confirmed as a fine complex oxide, Y2Zr2O7. These favorable microstructures led to superior tensile properties than commercial ferritic stainless steel and oxide dispersion strengthened ferritic alloy with only Ti addition at elevated temperature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
85--88
Opis fizyczny
Bibliogr. 9 poz., fot., rys., tab.
Twórcy
autor
- Korea Institute of Industrial Technology, Dongnam Regional Division, Busan, 46938, Korea
autor
- Pukyong National University, Department of Materials Science and Engineering, Busan, 48513, Korea
autor
- Korea Institute of Industrial Technology, Dongnam Regional Division, Busan, 46938, Korea
autor
- Pukyong National University, Department of Materials Science and Engineering, Busan, 48513, Korea
autor
- Pukyong National University, Department of Materials Science and Engineering, Busan, 48513, Korea
Bibliografia
- [1] T.K. Kim, S. Noh, S.H. Kang, J.J. Park, H.J. Jin, M.K. Lee, J. Jang, C.K. Rhee, Nucl. Eng. Technol. 48, 572 (2016).
- [2] S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, H. Nakashima, J. Nucl. Sci. Technol. 39, 872 (2002).
- [3] C.W. Park, J.M. Byun, J.K. Park, Y.D. Kim, J. Korean Powder Metall. Inst. 3, 61 (2016).
- [4] G. Jiang, D. Xu, P. Feng, S. Guo, J. Yang, Y. Li, J. Alloys Compd. 869, 159235 (2021).
- [5] P. Wang, S. Grdanovska, D.M. Bartels, G.S. Was, J. Nucl. Mater. 545, 152744 (2021).
- [6] S. Ukai, T. Nishida, H. Okada, T. Okuda, M. Fujiwara, K. Asabe, J. Nucl. Sci. Technol. 34, 256 (1997).
- [7] T.K. Kim, C.S. Bae, D.H. Kim, J. Jang, S.H. Kim, C.B. Lee, D. Hahn, Nucl. Eng. Technol. 40, 305 (2008).
- [8] M.K. Miller, K.F. Russell, D.T. Hoelzer, J. Nucl. Mater. 351, 261 (2006).
- [9] A.J.E. Foreman, M.J. Makin, Philosophical Magazine 911 (1966).
Uwagi
1. This work was supported by a Research Grant of Pukyong National University(2020).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad77e71d-c3f6-4fd2-9489-3d7201e0d097