PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Zirconia and Graphene Nanoparticles Loading on Thermo-Mechanical Performance of Hybrid Polymer Nanocomposite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study demonstrates the development of a unique hybrid thermoplastic composite using reduced Graphene oxide (rGO) content and Zirconia (ZrO2) nanoparticles into the Ultra-High Molecular Weight Polyethylene (UHMWPE) biomaterials for continuous loading conditions. Specimens with different loadings of rGO (0 to 1.5 wt.%) and ZrO2 (5 to 10 wt.%) were fabricated using liquid phase ultrasonication followed by the hot press moulding method. The samples were analyzed using Thermogravimetric Analysis (TGA), Impact (Izod) testing, and Dynamic Mechanical Analysis (DMA). The developed material feasibility was assessed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analyses. The findings revealed that the 1 wt.% rGO/5 wt.% ZrO2/UHMWPE sample improved the storage modulus by 66.15%, and the Impact absorbed energy by 11.33% compared to the pristine UHMWPE. The proposed nanocomposite could be endorsed for artificial joints, prostheses, and other Artificial Bio-Bearing (ABB) applications.
Słowa kluczowe
Twórcy
  • Madan Mohan Malaviya University of Technology, Department of Mechanical Engineering, Gorakhpur, 273010, India
  • School of Engineering, Harcourt Butler Technical University, Department of Mechanical Engineering, Kanpur, 208002, India
  • Madan Mohan Malaviya University of Technology, Department of Mechanical Engineering, Gorakhpur, 273010, India
Bibliografia
  • [1] T.T. Dang, M. Nikkhah, A. Memic, A. Khademhosseini, Polymeric Biomaterials for Implantable Prostheses, in: S.G. Kumbar, C.T. Laurencin, M. Deng (Eds.), Natural and Synthetic Biomedical Polymers 2014, Elsevier Inc. 2014. DOI: https://doi.org/10.1016/B978-0-12-396983-5.00020-X
  • [2] R. Scholz, M. Knyazeva, D. Porchetta, N. Wegner, F. Senatov, A. Salimon, S. Kaloshkin, F. Walther, Development of biomimetic in vitro fatigue assessment for UHMWPE implant materials, J. Mech. Behav. Biomed. Mater. 85 (5), 94-101 (2018). DOI: https://doi.org/10.1016/j.jmbbm.2018.05.034
  • [3] D.K. Singh, R.K. Verma, Contemporary Development on the Performance and Functionalization of Ultra High Molecular Weight Polyethylene (UHMWPE) for Biomedical Implants. Nano Life 11 (03), 2130009 (2021). DOI: https://doi.org/10.1142/s1793984421300090
  • [4] K. Mordal, A. Szarek, Analysis of Stresses and Strains Distribution of Polyethylene Cups in Hip Joint Endoprosthesis at Various Articular Joints and Friction Conditions. Arch. Metall. Mater. 66 (2), 523-530 (2021). DOI: https://doi.org/10.24425/amm.2021.135888
  • [5] S.G.A. Park, Abdal-Hay, J.K. Lim, Biodegradable poly (lactic acid)/multiwalled carbon nanotube nanocomposite fabrication using casting and hot press techniques. Arch. Mech. Eng. 60 (2), 1557-1559 (2015). DOI: https://doi.org/10.1515/amm-2015-0172
  • [6] S.A.P. Sughanthy, M.N.M. Ansari, A. Atiqah, Dynamic mechanical analysis of polyethylene terephthalate/hydroxyapatite biocomposites for tissue engineering applications. J. Mater. Res. Technol. 9 (2), 2350-2356 (2020). DOI: https://doi.org/10.1016/j.jmrt.2019.12.066
  • [7] T. Dayyoub, A.V. Maksimkin, S. Kaloshkin, E. Kolesnikov, D. Chukov, T.P. Dyachkova, I. Gutnik, The structure and mechanical properties of the UHMWPE films modified by the mixture of graphene nanoplates with polyaniline. Polymers (Basel). 11 (1), 1-14 (2019). DOI: https://doi.org/10.3390/polym11010023
  • [8] S.A. Maher, J.D. Lipman, L.J. Curley, M. Gilchrist, T.M. Wright, Mechanical performance of ceramic acetabular liners under impact conditions. J. Arthroplasty 18 (7), 936-941 (2003). DOI: https://doi.org/10.1016/S0883-5403(03)00335-8
  • [9] L.G. Amurin, M.D. Felisberto, F.L.Q. Ferreira, P.H.V. Soraes, P.N. Oliveira, B.F. Santos, J.C.S. Valeriano, D.C. De Miranda, G.G. Silva, Multifunctionality in ultra-high molecular weight polyethylene nanocomposites with reduced graphene oxide: Hardness, impact and tribological properties. Polymer (Guildf). 240, 124475 (2022). DOI: https://doi.org/10.1016/j.polymer.2021.124475
  • [10] G. Pavoski, T. Maraschin, M.A. Milani, D.S. Azambuja, R. Quijada, C.S. Moura, N. de Sousa Basso, G.B. Galland, Polyethylene/reduced graphite oxide nanocomposites with improved morphology and conductivity. Polymer (Guildf). 81, 79-86 (2015). DOI: https://doi.org/10.1016/j.polymer.2015.11.019
  • [11] M. Salari, S. Mohseni Taromsari, R. Bagheri, M.A. Faghihi Sani, Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement. J. Mater. Sci. 54 (5), 4259-4276 (2019). DOI: https://doi.org/10.1007/s10853-018-3146-y
  • [12] S. Kesarwani, R.K. Verma, A Critical Review on Synthesis, Characterization and Multifunctional Applications of Reduced Graphene Oxide (rGO)/Composites. Nano 16 (9), 2130008 (2021). DOI: https://doi.org/10.1142/S1793292021300085
  • [13] E.A. Albanés-Ojeda, R.M. Calderón-Olvera, M. García-Hipólito, D. Chavarría-Bolaños, R. Vega-Baudrit, M.A. Álvarez-Perez, O. Alvarez-Fregoso, Physical and chemical characterization of PLA nanofibers and PLA/ZrO2 mesoporous composites synthesized by air-jet spinning. Indian J. Fibre Text. Res. 45 (1), 57-64 (2020).
  • [14] E.H. Backes, L.D.N. Pires, C.A.G. Beatrice, L.C. Costa, F.R. Passador, L.A. Pessan, Fabrication of Biocompatible Composites of Poly (lactic acid)/Hydroxyapatite Envisioning Medical Applications. Polym. Eng. Sci. 60 (3), 636-644 (2020). DOI: https://doi.org/10.1002/pen.25322
  • [15] H.S. Jaggi, S. Kumar, D. Das, B.K. Satapathy, A.R. Ray, Morphological correlations to mechanical performance of hydroxyapatite-filled HDPE/UHMWPE composites. J. Appl. Polym. Sci. 132 (1), 1-10 (2015). DOI: https://doi.org/10.1002/app.41251
  • [16] M.A. Bashir, Use of Dynamic Mechanical Analysis (DMA) for Characterizing Interfacial Interactions in Filled Polymers. Solids. 2 (1), 108-120 (2021). DOI: https://doi.org/10.3390/solids2010006
  • [17] K. Sewda, S.N. Maiti, Dynamic mechanical properties of high-density polyethylene and teak wood flour composites. Polym. Bull. 70 (10), 2657-2674 (2013). DOI: https://doi.org/10.1007/s00289-013-0941-0
  • [18] L.M. Lozano-Sánchez, I. Bagudanch, A.O. Sustaita, J. Iturbe-Ek, L.E. Elizalde, M.L. Garcia-Romeu, A. Elías-Zúñiga, Single-point incremental forming of two biocompatible polymers: An insight into their thermal and structural properties. Polymers (Basel). 10 (4), 391 (2018). DOI: https://doi.org/10.3390/polym10040391
  • [19] Y.A. Kang, S.H. Oh, J.S. Park, Properties of UHMWPE fabric reinforced epoxy composite prepared by vacuum-assisted resin transfer molding. Fibers Polym. 16 (6), 1343-1348 (2015). DOI: https://doi.org/10.1007/s12221-015-1343-8
  • [20] D. Duraccio, V. Strongone, G. Malucelli, F. Auriemma, C. De Rosa, F.D. Mussano, T. Genova, M.G. Faga, The role of alumina-zirconia loading on the mechanical and biological properties of UHMWPE for biomedical applications. Compos. Part B. 164 (1), 800-808 (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.01.097
  • [21] D. Berman, A. Erdemir, A.V. Sumant, Graphene: A new emerging lubricant. Mater. Today. 17 (1), 31-42 (2014). DOI: https://doi.org/10.1016/j.mattod.2013.12.003
  • [22] N. Dalai, P.S.R. Sreekanth, UHMWPE / nanodiamond nano-composites for orthopaedic applications: A novel sandwich configuration-based approach. J. Mech. Behav. Biomed. Mater. 116 (9), 104327 (2021). DOI: https://doi.org/10.1016/j.jmbbm.2021.104327
  • [23] I.N. Safi, H.K. A., Ali N.A., Assessment of zirconium oxide nano-fillers incorporation and silanation on impact, tensile strength and color alteration of heat polymerized acrylic resin. J. Baghdad Coll. Dent. 24 (2), 36-42 (2012).
  • [24] S. Watcharamaisakul, B. Sindhupakorn, A. Lepon, Effect of Graphite Addition on Mechanical Properties of UHMWPE for Use as Tibia Insert Bio composite Materials. Suranaree J. Sci. Technol. 24 (2), 105-111 (2017).
  • [25] A. Kiziltas, S. Tamrakar, J. Rizzo, D. Mielewski, Characterization of graphene nanoplatelets reinforced sustainable thermoplastic elastomers. Compos. Part C Open Access. 6 (7), 100172 (2021). DOI: https://doi.org/10.1016/j.jcomc.2021.100172
  • [26] B. Suresha, A. Padaki, A. Jain, B. Kumar, A.A. Kulkarni, Role of Zirconia Filler on Mechanical Properties of HDPE/UHMWPE Blend Composites. Appl. Mech. Mater. 895, 272-277 (2019). DOI: https://doi.org/10.4028/www.scientific.net/amm.895.272
  • [27] B.J. Ash, R.W. Siegel, L.S. Schadler, Mechanical Behavior of Alumina/Poly (methyl methacrylate) Nanocomposites. Macromolecules 37 (4), 1358-1369 (2004). DOI: https://doi.org/10.1021/ma0354400
  • [28] S. Suñer, R. Joffe, J.L. Tipper, N. Emami, Ultra-high molecular weight polyethylene/graphene oxide nanocomposites: Thermal, mechanical and wettability characterization. Compos. Part B Eng. 78, 185-191 (2015). DOI: https://doi.org/10.1016/j.compositesb.2015.03.075
  • [29] N. Yousefi, X. Lin, Q. Zheng, X. Shen, J.R. Pothnis, J. Jia, E. Zussman, J.K. Kim, Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59, 406-417 (2013). DOI: https://doi.org/10.1016/j.carbon.2013.03.034
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad71636e-c087-407b-b066-e1e14146cc7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.