PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recyclability of Ore Beneficiation Wastes at the Lomonosov Deposit

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the data based on the long-term observations of the Lomonosov mine tailing storage impact on the natural environment. The study of the chemical, mineral and phase composition of waste, sampled at the tailing site, was carried out. It was determined that the ore beneficiation waste in the Lomonosov deposit is generally represented by the minerals of the smectite group. According to the X-ray diffraction analysis data, the beneficiation wastes are a bi-mineral mixture of montmorillonite and talc with pyrophyllite impurities. The wastes of this composition are potentially magnesia raw materials used in the production of construction materials, such as cement, ceramic bricks, etc. Experimental studies have justified the use of the method of wastes recycling based on the roasting of the ore beneficiation tailings, with the number of process options, depending on the temperature regimes and the exposure time.
Rocznik
Strony
27--33
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Saint Petersburg Mining University, 2, 21st line V.O., St Petersburg, 199106, Russian Federation
  • Saint Petersburg Mining University, 2, 21st line V.O., St Petersburg, 199106, Russian Federation
Bibliografia
  • 1. Alekseenko, V.A., Maximovich, N.G., Alekseenko, A.V., 2017a. Geochemical Barriers for Soil Protection in Mining Areas. In: Bech, J., Bini, C., Pashkevich, M.A. (eds.) Assessment, Restoration and Reclamation of Mining Influenced Soils, Elsevier Inc. DOI: 10.1016/B978–0–12–809588–1.00009–8
  • 2. Alekseenko, V.A., Shvydkaya, N.V., Alekseenko, A.V., Yashchinin, S.B., 2017b. Natural Restoration of Mining Influenced Soils in the Northwestern Caucasus, Russia. In: Bech, J., Bini, C., Pashkevich, M.A. (eds.) Assessment, Restoration and Reclamation of Mining Influenced Soils, Elsevier Inc. DOI: 10.1016/B978–0–12–809588–1.00010–4
  • 3. Beloglazov, I.I., Suslov, A.P. Pedro, A.A., 2014. Change of constant component of phase voltage during melting of zirconium corundum. Tsvetnye Metally, 5, pp. 86–89.
  • 4. Cehlár, M., Domaracká, L., Šimko, I., Puzder, M., 2016. Mineral resource extraction and its political risks. Production Management and Engineering Sciences – Scientific Publication of the International Conference on Engineering Science and Production Management, ESPM 2015, pp. 39–43.
  • 5. Conner, J.R., Hoeffner, S.L., 1998. A Critical Review of Stabilization/Solidification Technology. Critical Reviews in Environmental Science and Technology, 28 (4), pp.397–462.
  • 6. Glebov, V.D., Lysenko, V.P., 1979. Calculation of the thickness of the polymer film impervious screens. Hydraulic engineering construction, 6, pp. 17–20.
  • 7. GOST 12248–2010. Soils. Laboratory methods for determining the strength and strain characteristics
  • 8. GOST 20432–83. Fertilizers. Terms and definitions
  • 9. GOST 21216–2014. Clay raw materials. Test methods
  • 10. Greenwood, N.N., Earnshaw, A., 1997. Chemistry of the Elements. 2nd Edition. Butterworth-Heinemann.
  • 11. Jordán M.M., Bech J., García-Sánchez E., García-Orenes F., 2016. Bulk density and aggregate stability assays in percolation columns. Journal of Mining Institute. Vol. 222, pp. 877–881.
  • 12. Kalb, P.D., Heiser, J.H., Colombo, P., 1991. Long-term durability of polyethylene for encapsulation of low-level radioactive, hazardous, and mixed wastes.
  • 13. Özverdİ, A., Erdem, M., 2010. Environmental risk assessment and stabilization/solidification of zinc extraction residue: I. Environmental risk assessment. Hydrometallurgy, 100 (3–4), pp.103–109.
  • 14. Pashkevich, M.A., 2017. Classification and Environmental Impact of Mine Dumps. In: Bech, J., Bini, C., Pashkevich, M.A. (eds.) Assessment, Restoration and Reclamation of Mining Influenced Soils, Elsevier Inc. DOI: 10.1016/B978–0–12–809588–1.00001–3
  • 15. Pashkevich, M.A., Petrova, T.A., 2017. Reclamation by Containment: Polyethylene-Based Solidification. In: Bech, J., Bini, C., Pashkevich, M.A. (eds.) Assessment, Restoration and Reclamation of Mining Influenced Soils, Elsevier Inc. DOI: 10.1016/B978–0–12–809588–1.00008–6
  • 16. Pavolová, H., Khouri, S., Cehlár, M., Domaracká, L., Puzder, M., 2016. Modelling of copper and zinc adsorption onto zeolite. Metalurgija, 55 (4), pp. 712–714.
  • 17. Peacock, A., 2000. Handbook of Polyethylene: Structures: Properties, and Applications, CRC Press.
  • 18. Raj, D.S.S. et al., 2005. Stabilisation and solidification technologies for the remediation of contaminated soils and sediments: an overview. Land Contamination, Reclamation, 13 (1), pp.23–48.
  • 19. Rechard, R.P., 2000. Historical background on performance assessment for the Waste Isolation Pilot Plant. Reliability Engineering, System Safety, 69 (1–3), pp. 5–46.
  • 20. Simpson, H.E., 1988. Artificial deposits and modified land. In: Encyclopedia of Earth Sciences. General Geology. Springer US.
  • 21. Spence, R.D., Shi, C., 2005. Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, Taylor, Francis.
  • 22. Tedder, D.W., Pohland, F.G. eds., 2002. Emerging Technologies in Hazardous Waste Management 8, Boston: Kluwer Academic Publishers.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad6be73a-05a2-479f-994c-48686334f6b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.