PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Electrical Resistivity Imaging for Engineering Site Investigation. A Case Study on Prospective Hospital Site, Varamin, Iran

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article addresses the application of electrical resistivity imaging for engineering site investigation in Pishva Hospital, Varamin, Iran. Some aqueduct shafts exist in the study area backfilled by loose materials. The goals of this study are to detect probable aqueduct tunnels and their depth, investigate filling quality in the shafts as well as connection(s) between them. Therefore, three profiles were surveyed by dipoledipole electrode array. Also, to investigate the potentially anomalous areas more accurately, five additional resistivity profiles were measured by a Combined Resistivity Sounding-Profiling array (CRSP). According to the results of 2-D inversion modelling, a main aqueduct tunnel was detected beneath the central part of the site. Finally, the resistivity pattern of the detected aqueduct system passing the investigated area was provided using the obtained results.
Słowa kluczowe
Czasopismo
Rocznik
Strony
2200--2213
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
autor
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
Bibliografia
  • Amini, A., and H.R. Ramazi (2016), Anomaly enhancement in 2-D Electrical resistivity imaging method using residual resistivity technique, J. Southern Afr. Inst. Min. Metall. 116, 2, 161-168, DOI: 10.17159/2411-9717/2016/ v116n2a7.
  • Asfahani, J., and B. Abou Zakhem (2013), Geoelectrical and hydrochemical investigations for characterizing the salt water intrusion in the Khanasser valley, northern Syria, Acta Geophys. 61, 2, 422-444, DOI: 10.2478/s11600-012- 0071-3.
  • Bayrak, M., and L. Senel (2012), Two-dimensional resistivity imaging in the Kestelek boron area by VLF and DC resistivity methods, J. Appl. Geophys. 82, 1-10, DOI: 10.1016/0926-9851(95)90040-3.
  • BBC News (2015), Grays sinkhole caused by quarry tunnel collapse, say experts, BBC News, available from: http://www.bbc.com/news/uk-england-essex- 32921411(accessed: 11 November 2015).
  • Benson, A.K. (1995), Applications of ground penetrating radar in assessing some geological hazards: examples of groundwater contamination, faults, cavities, J. Appl. Geophys. 33, 1-3, 177-193, DOI: 10.1016/0926-9851(95) 90040-3.
  • Burger, H.R. (1992), Exploration Geophysics of the Shallow Subsurface, PrenticeHall, Englewood Cliffs, 489 pp.
  • Candansayar, M.E., and A.T. Basokur (2001), Detecting small scale targets by the 2D inversion of two-sided three- electrode data: application to an archaeological survey, Geophys. Prospect. 49, 1, 13-25, DOI: 10.1046/j.1365- 2478.2001.00233.x.
  • Cosenza, P., E. Marmet, F. Rejiba, Y.J. Cui, A. Tabbagh, and Y.Charlery (2006), Correlations between geotechnical and electrical data: A case study at Garchy in France, J. Appl. Geophys. 60, 3-4, 165-178, DOI: 10.1016/j.jappgeo. 2006.02.003.
  • Dindarloo, S., and E. Siami-Irdemoosa (2015), Maximum surface settlement based classification of shallow tunnels in soft ground, Tunn. Undergr. Sp. Tech. 49, 320-327, 320-327, DOI: 10.1016/j.tust.2015.04.021.
  • Donya-e eqtesad (2009), Obsolete Qanats caused Tohid tunnel collapse, Donya-e eqtesad newspaper, available from: http://www.donya-e-eqtesad.com/news/ 568474 (accessed: 10 November 2015).
  • Fang, Q., Q. Tai, D. Zhang, and L. Wong (2016), Ground surface settlements due to construction of closely-spaced twin tunnels with different geometric arrangements, Tunn. Undergr. Sp. Tech. 51, 144-151, DOI: 10.1016/j.tust. 2015.10.031, 144-151.
  • Fehdi, C., F. Baali, D. Boubaya, and A. Rouabhia (2011), Detection of sinkholes using 2D electrical resistivity imaging in the Cheria Basin (north-east of Algeria), Arab. J. Geosci. 14, 1-2, 181-187, DOI: 10.1007/s12517-009-0117- 2.
  • Gautam, P., R.P. Surendra, and A. Hisao (2000), Mapping of subsurface karst structure with gamma ray and electrical resistivity profiles: a case study from Pokhara valley, central Nepal, J. Appl. Geophys. 45, 2, 97-110, DOI: 10.1016/S0926-9851(00)00022-7.
  • Giang, N.V., N.B. Duan, L. Thanh, and N. Hida (2013), Geophysical techniques to aquifer locating and monitoring for industrial zones in North Hanoi, Vietnam, Acta Geophys. 61, 6, 1573-1597, DOI: 10.2478/s11600-013-0147-8.
  • Hee, S.H., S.K. Dae, and J.P. Inn (2010), Application of electrical resistivity techniques to detect weakened fracture zones during underground construction, Environ. Earth Sci. 60, 4, 723-731, DOI: 10.1007/s12665-009-0210-6.
  • ICQHS (2015), ICQHS official website available from: http://icqhs.org/ SC.php? type=staticandid=25 (accessed: 11 November 2015).
  • Loke, M., and R. Barker (1996), Rapid least squares inversion of apparent resistivity pseudosections using a quasi Newton’s method, Geophys. Prospect. 44, 1, 131-152, DOI: 10.1111/j.1365-2478.1996.tb00142.x.
  • Narayan, S., M.B. Dusseault, and D.C. Nobes (1994), Inversion techniques applied to resistivity inverse problems, Inverse Probl. 10, 3, 669-686, DOI: 10.1088/0266-5611/10/3/011.
  • Papadopoulos, N.G., P. Tsourlos, G.N. Tsokas, and A. Sarris (2007), Efficient ERT measuring and inversion strategies for 3D imaging of buried antiquities, Near Surf. Geophys. 5, 6, 349-361, DOI: 10.3997/1873-0604.2007017.
  • Ramazi, H.R. (2005), Combined resistivity sounding and profiling and its application in mineral exploration and site investigation, Technical Report, Tehran, 21 pp. (in Persian).
  • Ramazi, H.R., and M. Jalali (2014), Contribution of geophysical inversion theory and geostatistical simulation to determine geoelectrical anomalies, Stud. Geophys. Geod. 59, 1, 97-112, DOI: 10.1007/s11200-013-0772-3.
  • Ramazi, H.R., and K. Mostafaie (2013), Application of integrated geoelectrical methods in Marand (Iran) manganese deposit exploration, Arab. J. Geosci. 6, 8, 2961-2970, DOI: 10.1007/s12517-012-0537-2.
  • Semsar Yazdi, A., and S. Askarzadeh (2007), A historical review on the Qanats and historic hydraulic structures of Iran since the first millennium B.C., International History Seminar on Irrigation and Drainage, Tehran, Iran.
  • Van Schoor, M. (2002), Detection of sinkholes using 2D electrical resistivity imaging, J. Appl. Geophys. 50, 4, 393-399, DOI: 10.1016/S0926-9851(02) 00166-0.
  • Wilkinson, P.B., P.I. Meldrumm, O. Kuras, J.E. Chambers, S.J. Holyoake, and R.D. Ogilvy (2010), High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer, J. Appl. Geophys. 70, 4, 268-276, DOI: 10.1016/j.jappgeo.2009.08.001.
  • Winters, G., I. Ryvkin, T. Rudkov, Z. Moreno, and A. Furman (2015), Mapping underground layers in the super arid Gidron Wadi using electrical resistivity tomography (ERT), J. Arid Environ. 121, 79-83, DOI: 10.1016/j.jaridenv. 2015.05.008.
  • Zhou, W., B.F. Beck, and A.L. Adams (2002), Effective electrode array in mapping karst hazards in electrical resistivity tomography, Environ. Geol. 42, 8, 922- 928, DOI: 10.1007/s00254-002-0594-zv.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad65da96-17a5-464e-bc53-28126996ed43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.