PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Atomic scale study of silver sulfide leaching with cyanide and thiourea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding of atomic scale interactions of molecular species with mineral surfaces is needed to bring about mineral processing innovation. In this regard, Density Functional Theory (DFT) methods are well suited. In this work, the outcome of leaching synthetic acanthite –a surrogate for a silver-containing sulfide ore- with both cyanide ion and thiourea are studied with DFT considering solvent effects. The results are correlated to the experimental percentage of silver extracted with each of the leaching agents under similar conditions of molar concentration, temperature and percentage of solids. Our calculations show both leaching reactions to be exergonic and of the same order of magnitude in Gibbs energy of reaction than values determined from thermodynamic tables. Also, less favorable Gibbs reaction energies are obtained for cyanidation in absence of oxygen and thioureation in absence of Fe(II) highlighting the impact of oxidants on the exergonicity of the respective global leaching reactions. Finally, analyzing the percentage of silver extracted from acanthite and the absolute value of Gibbs energies of the respective reaction, we conclude that the more exergonic a leaching reaction, the higher percentage of silver is extracted from acanthite, provided that there is no kinetic control of each of the leaching reactions.
Słowa kluczowe
Rocznik
Strony
969--980
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wz.
Twórcy
  • Department of Bioengineering and Chemical Engineering, Universidad de Ingenieria y Tecnologia –UTEC, Barranco, Peru
  • Department of Bioengineering and Chemical Engineering, Universidad de Ingenieria y Tecnologia –UTEC, Barranco, Peru
  • Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
  • Department of Bioengineering and Chemical Engineering, Universidad de Ingenieria y Tecnologia –UTEC, Barranco, Peru
  • Department of Bioengineering and Chemical Engineering, Universidad de Ingenieria y Tecnologia –UTEC, Barranco, Peru
Bibliografia
  • AÇMA, E., ARSLAN, F., WUTH, W., 1993. Silver extraction from a refractory type ore by thiourea leaching. Hydrometallurgy 34, 263–274.
  • ALP, I., CELEP, O., PAKTUNÇ, D., THIBAULT, Y., 2014. Influence of potassium hydroxide pretreatment on the extraction of gold and silver from a refractory ore. Hydrometallurgy 146, 64–71.
  • ARUMUGAM, K., BECKER, U., 2014, Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces. Minerals 4, 345–387.
  • AYLMORE, M. G., MUIR, D. M., ALYMORE, M. G., 2001. Thiosulfate Leaching of Gold-a Review. Miner Eng 14, 135–174.
  • BALÁŽ, P., FICERIOVÁ, J. ŠEPELÁK, V., KAMMEL, R., 1996. Thiourea Leaching of Silver from Mechanically Activated Tetrahedrite. Hydrometalurgy 43, 367–377.
  • BECKE, A. D., 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98: 5648–5652.
  • BRUCKARD, W. J., SPARROW, G. J., WOODCOCK, J. T., 1993. Gold and silver extraction from Hellyer lead-zinc flotation middlings using pressure oxidation and thiourea leaching. Hydrometallurgy 33, 17–41.
  • BRYANTSEV, V. S., DIALLO, M. S., GODDARD III, W. A., 2008. Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models. J. Phys. Chem. B 112, 9709–9719.
  • CELEP, O., ALP, I., PAKTUNÇ, D., THIBAULT, Y., 2011. Implementation of sodium hydroxide pretreatment for refractory antimonial gold and silver ores. Hydrometallurgy 108,109–114.
  • EMERY-TRINDADE, R., 1994. Tiouréia e bromo como lixiviantes alternativos à cianetação de ouro. CETEM/CNPq, Rio de Janeiro.
  • FENG, Q., WEN, S., DENG, J., ZHAO, W., 2017. DFT Study on the Interaction between Hydrogen Sulfide Ions cerussite (110) surface. Appl. Surf. Science 396, 920-925.
  • FENG, Q., WEN, S., DENG, J., ZHAO, W., 2017. Combined DFT and XPS Investigation of Enhanced Adsorption of Sulfide Species onto Cerussite by Surface Modification with Chloride. Appl Surf Science 425, 8-15
  • FERNANDO, A., WEERAWARDENE, K. L. D. M., KARIMOVA, N. V., AIKENS, C. M., 2015. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chem Rev 115, 6112–6216.
  • FRISCH, M. J., TRUCKS, G. W., SCHLEGEL, H. B., SCUSERIA, G. E., ROBB, M. A., CHEESEMAN, J. R., SCALMANI, G., BARONE, V., MENNUCCI, B., PETERSSON, G. A., NAKATSUJI, H., CARICATO, M., LI, X., HRATCHIAN, H. P., IZMAYLOV, A. F., BLOINO, J., ZHENG, G., SONNENBERG, D. J., HADA, M., EHARA, M., TOYOTA, K., FUKUDA, R.,HASEGAWA, J., ISHIDA, M., NAKAJIMA, T., HONDA, Y., KITAO, O., NAKAI, H., VREVEN, T., MONTGOMERY, J. A., JR., PERALTA, J. E., OGLIARO, F., BEARPARK, M., HEYD, J. J., BROTHERS, E., KUDIN, K. N., STAROVEROV, V. N., KEITH, T., KOBAYASHI, R., NORMAND, J., RAGHAVACHARI, K., RENDELL, A., BURANT, J. C., IYENGAR, S. S., TOMASI, J., COSSI, M., REGA, N., MILLAM, J. M., KLENE, M., KNOX, J. E., CROSS, J. B., BAKKEN, V., ADAMO, C., JARAMILLO, J., GOMPERTS, R., STRATMANN, R. E., YAZYEV, O., AUSTIN, A. J., CAMMI, R., POMELLI, C., OCHTERSKI, J. W., MARTIN, R. L., MOROKUMA, K., ZAKRZEWSKI, V. G., VOTH, G. A., SALVADOR, P., DANNENBERG, J. J., DAPPRICH, S., DANIELS, A. D., FARKAS, Ö., FORESMAN, J. B., ORTIZ, J. V., CIOSLOWSKI, J., FOX, D. J., 2013. Gaussian 09, Revision E.01. Gaussian, Inc. Wallingford CT.
  • FRUEH JR., A. J., 1958. The Crystallography of silver sulfide Ag2S. Zeitschrift fur Krist 110, 136–144.
  • GAŠPAR, V., MEJEROVICH, A. S., MERETUKOV, M. A., SCHMIEDL, J., 1994. Practical application of potential-pH diagrams for Au-CS(NH2)2-H2O and Ag-CS(NH2)2-H2O systems for leaching gold and silver with acidic thiourea solution. Hydrometallurgy 34, 369–381.
  • GASPARRINI, C., 1983. The mineralogy of gold and its significance in metal extraction. CIM Bull 76, 144–153.
  • GRIMME, S., ANTONY, J., EHRLICH, S., KRIEG, H., 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132, 154104–154119.
  • GUTTEN, O., RULÍŠEK, L., 2013. Predicting the stabilityconstants of metal-ion complexes from first principles. Inorg Chem 52, 10347–10355.
  • HAY, P. J., WADT, W. R., 1985. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Scto Hg. J Chem Phys 82, 270–283.
  • HELLWEG, A., ECKERT, F., 2017. Brick by brick computation of the gibbs free energy of reaction in solution using quantum chemistry and COSMO-RS. AIChE J 63, 3944–3954.
  • HO, J., 2015. Are thermodynamic cycles necessary for continuum solvent calculation of pKas and reduction potentials? Phys Chem Chem Phys 17, 2859–2868.
  • HO, J., ERTEM, M. Z., 2016. Calculating Free Energy Changes in Continuum Solvation Models. J Phys Chem B 120, 1319–1329.
  • ISEGAWA, M., NEESE, F., PANTAZIS, D. A., 2016. Ionization Energies and Aqueous Redox Potentials of Organic Molecules: Comparison of DFT, Correlated ab Initio Theory and Pair Natural Orbital Approaches. J Chem Theory Comput 12, 2272–2284.
  • JIANG, H., XIE, F., DREISINGER, D. B., 2015. Comparative study of auxiliary oxidants in cyanidation of silver sulfide. Hydrometallurgy 158, 149–156.
  • JIANG, Y., WANG, D., PAN, Z., MA, H., LI, M., LI, J., ZHENG, A., LV, G., TIAN, Z., 2018. Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation. Front Chem Sci Eng 12, 32–42.
  • LA BROOY, S. R., LINGE, H. G., WALKER, G. S., 1994. Review of gold extraction from ores. Miner Eng 7: 1213–1241.
  • LIANG, G., DEYONKER, N. J., ZHAO, X., WEBSTER, C. E., 2017. Prediction of the reduction potential in transition-metal containing complexes: How expensive? For what accuracy? J Comput Chem 38: 2430–2438.
  • LINDSTROM, R. E., SJOBERG, J. J., POOL, D. L., SCHEINER, B. J., 1973. Extraction of silver from refractory ores. U.S. Dept. of Interior, Bureau of Mines, Washington, D.C.
  • MENNUCCI, B., 2012. Polarizable continuum model. Wiley Interdiscip Rev Comput Mol Sci 2, 386–404.
  • MOMMA, K., IZUMI, F., 2008. VESTA: A three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41: 653–658.
  • PARKER, V. B., KHODAKOVSKII, I. L., 1995. Thermodynamic Properties of the Aqueous Ions (2+ and 3+) of Iron and the Key Compounds of Iron. J Phys Chem Ref Data 24, 1699–1745.
  • QIU, X. Y., HU, Z., SONG, B. X., LI, H. W., ZOU, J. J., 2014. A novel process for silver recovery from a refractory Au-Ag ore in cyanidation by pretreatment with sulfating leaching using pyrite as reductant. Hydrometallurgy 144–145, 34–38.
  • SABA, M., MOHAMMADYOUSEFI, A., RASHCHI, F., MOGHADDAM, J., 2011. Diagnostic pre-treatment procedure for simultaneous cyanide leaching of gold and silver from a refractory gold/silver ore. Miner Eng 24, 1703–1709.
  • SVERDRUP, H., KOCA, D., RAGNARSDOTTIR, K. V., 2014. Investigating the sustainability of the global silver supply, reserves, stocks in society and market price using different approaches. Resour Conserv Recycl 83, 121–140.
  • TOMASI, J., MENNUCCI, B., CAMMI, R., 2005. Quantum mechanical continuum solvation models. Chem Rev 105: 2999–3093.
  • TOULHOAT, H., DIGNE, M., ARROUVEL, C., RAYBAUD, P., 2005. DFT studies of fluid-minerals interactions at the molecular level: Examples and perspectives. Oil Gas Sci Technol 60, 417–433.
  • UBALDINI, S., FORNARI, P., MASSIDA, C., ABBRUZZESE, C., 1998. An innovative thiourea goldleaching process. Hidrometallurgy 48, 113–124.
  • UUDSEMAA, M., TAMM, T., 2003. Density-functional theory calculations of aqueous redox potentials of fourth-period transition metals. J Phys Chem A 107, 9997–10003.
  • WAGMAN, D. D., EVANS, W. H., PARKER, V. B., SCHUMM, R. H., HALOW, I., BAILEY, S. M., CHURNEY, K. L., NUTTALL, R. L., 1982. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. PhysChem Ref Data 11: Supplement No. 2, 2.1-2.392.
  • WANG, D., WANG, Z., WANG, C., ZHOU, P., WU, Z., LIU, Z., 2013. Distorted MoS2 nanostructures: An efficient catalyst for the electrochemical hydrogen evolution reaction. Electrochem commun 34, 219–222.
  • XIE, F., DREISINGER, D. B., 2007. Leaching of silver sulfide with ferricyanide–cyanide solution. Hydrometallurgy 88, 98–108.
  • ZHURKO, G. A., ZHURKO, D. A., 2016. Chemcraft -graphical software for visualization of quantum chemistry computations. http://www.chemcraftprog.com
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad56f51c-90cd-4837-827f-611ba4c1c168
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.