PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deformation sensing with a multimode POF using speckle correlation processing method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A deformation sensing technique with a multimode plastic optical fibre based on intensity speckle patterns’ correlation coefficient measurement has been presented. Influence of the average speckle size on results of deformation measuring has been studied and discussed. The presented sensing technique pro-vides a good linear response to the applied deformation in a relatively wide operation region. It is shown hat the proposed technique is highly sensitive, low-cost and simple to implement in practice.
Twórcy
  • Department of Photonics, Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine
autor
  • Department of Photonics, Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine
  • Department of Mathematics and Automation, University of Rzeszow, 1 St. Pigonia St., Rzeszów 35-310, Poland
autor
  • University of Applied Sciences “Georg Simon Ohm”, Wassertorstr. 10, Nuremberg 90489, Germany
Bibliografia
  • [1] K. Peters, Polymer optical fibre sensors - a review, Smart Mater. Struct. 20 (2011) 338-346.
  • [2] L. Mescia, F. Prudenzano, Advances on optical fibre sensors, Fibres 2 (2014) 1-23.
  • [3] B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, H. Y. Choi, Interferometric fibre optic sensors, Sensors 12 (2012) 2467-2486.
  • [4] K. S. C. Kuang, S. T. Quek, M. Maalej, Polymer-based optical fibre sensors for health monitoring of engineering structures, in smart structures and materials: sensors and smart structures, Proc. SPIE 5765 (2005) 656-667.
  • [5] D. Hwang, L. V. Nguyen, D. S. Moon, Y. Chung, Intensity-based optical fibre strain sensor using long-period fibre gratings and a core mode blocker, Meas. Sci. Technol. 20 (2009) 034020.
  • [6] M. Remouche, R. Mokdad, A. Chakari, Intrinsic integrated optical sensor based on waveguide bend loss, Opt. Laser Technol. 39 (2007) 1454-1460.
  • [7] A. Babchenko, Z. Weinberger, N. Itzkovich, J. Maryles, Plastic optical fibre with structural imperfections as a displacement sensor, Meas. Sci. Technol. 17 (2006) 1157-1161.
  • [8] X. Dong, H. Y. Tam, Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fibre based Sagnac interferometer, Appl. Phys. Lett. 90 (2007), 151113, 3.
  • [9] I. B. Kwon, M. Y. Choi, H. Moon, Strain measurement using fibre optic total reflected extrinsic Fabry-Perot interferometric sensor with a digital signal processing algorithm, Sens. Actuators A-Phys. 112 (2004) 10-17.
  • [10] M. Szustakowski, N. Palka, Contrast sensitive fibre optic Michelson interferometer as elongation sensor, Opto-Electron. Rev. 8 (2006) 19-26.
  • [11] S. Pevec, D. Donlagic, All-fibre long-active-length Fabry-Perot strain sensor, Opt. Express 19 (2011) 15641-15651.
  • [12] S. C. Her, C. M. Yang, Dynamic strain measured by Mach-Zehnder interferometric optical fibre sensors, Sensors 12 (2012) 3314–3326.
  • [13] F. T. S. Yu, Fibre specklegram sensors, in: S. Yin, P. B. Ruffin, F. T. S. Yu (Eds.), Fibre Optic Sensors, Second ed., CRC Press, 2008, pp. 201-252.
  • [14] M. Kondrat, M. Szustakowski, A. Gorka, N. Palka, M. Zyczkowski, S. Niznik, Modal interference fibre optic sensor, Proc. SPIE 5611 (2004) 225.
  • [15] I. O. A. Oraby, J. W. Spencer, G. R. Jones, Monitoring changes in the speckle field from an optical fibre exposed to low frequency acoustical vibrations, J. Mod. Opt. 56 (2009) 55-66.
  • [16] B. Gupta, H. N. Bhargaw, H. K. Sardana, Qualifying fibre optic temperature sensor using speckle metrology, Int. J. Inform. Technol. Knowl. Manage. 1 (2008) 337-350.
  • [17] F. T. S. Yu, M. Wen, S. Jing, C. M. Uang, Submicrometer displacement sensing using inner-product multimode fibre speckle fields, Appl. Opt. 32 (1993) 4685-4689.
  • [18] K. Pan, C. Uang, F. Cheng, F. Yu, Multimode fibre sensing by using mean-absolute speckle-intensity variation, Appl. Opt. 33 (1994) 2095-2098.
  • [19] A. Garcia-Valenzuela, M. Tabib-Azar, Fibre-optic force and displacement sensor based on speckle detection with 0.1 nN and 0.1 Å resolution, Sens. Actuat. A-Phys. 36 (1993) 199-208.
  • [20] M. R. Sayeh, R. Viswanathan, L. Gupta, D. Kagaris, D. Kanneganti, Fibre optic sensor-based system to estimate stress in smart structures, Proc. SPIE 3330 (1998) 352-361.
  • [21] Z. Zhang, F. Ansari, Fibre-optic laser speckle-intensity crack sensor for embedment in concrete, Sens. Actuat. A-Phys. 126 (2006) 107-111.
  • [22] B. Regez, M. Sayeh, A. Mahajan, F. Figueroa, A novel fibre optics based method to measure very low strains in large scale infrastructures, Measurement 42 (2009) 183-188.
  • [23] L. Bilro, N. Alberto, J. L. Pinto, R. Nogueira, Optical sensors based on plastic fibres, Sensors 12 (2012) 12184-12207.
  • [24] H. H. Cerecedo-Nunez, P. Padilla-Sosa, A. Sanchez-Martinez, G. Rodriguez-Zurita, Optical fibre characterization for its implementation in speckle pattern interferometry, Proc. SPIE 6422 (2007), 64220M.
  • [25] J. Gomez, H. Lorduy, A. Salazar, Improvement of the dynamic range of a fibre speckle gram sensor based on volume speckle recording in photorefractive materials, Opt. Laser Eng. 49 (2011) 473-480.
  • [26] J. Gomez, A. Salazar, Self-correlation fibre specklegram sensor using volume characteristics of speckle patterns, Opt. Laser Eng. 50 (2012) 812-815.
  • [27] L. Rodriguez-Cobo, M. Lomer, A. Cobo, J. M. Lopez-Higuera, Optical fibre strain sensor with extended dynamic range based on specklegrams, Sens. Actuat. A-Phys. 203 (2013) 341-345.
  • [28] A. M. R. Sousa, J. Xavier, M. Vaz, J. J. L. Morais, V. M. J. Filipe, Cross-correlation and differential technique combination to determine displacement fields, Strain 47 (2011) 87-98.
  • [29] Y. N. Kulchin, O. B. Vitrik, A. D. Lantsov, Correlation method for processing speckles of signals from single-fibre multimode interferometers by using charge-coupled devices, Quant. Electron. 36 (2006) 56-58.
  • [30] M. Sjödahl, Some recent advances in electronic speckle photography, Opt. Laser Eng. 29 (1998) 125-144.
  • [31] B. Redding, S. M. Popoff, H. Cao, All-fibre spectrometer based on speckle pattern reconstruction, Opt. Express 21 (2013) 6584-6600.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad53abbb-8716-453d-8ecc-d8a263be18d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.