PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of the hydropneumaticaccumulator on the dynamic and noise of the hydrostatic drive operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the possibility of influencing the hydrostatic drive's dynamics and noise using a hydropneumatics accumulator. The possibility of limiting the maximum dynamic load during the start-up period of a drive equipped with an accumulator and controlled by a slide distributor is presented in the article. The influence of the accumulator on the sound pressure level and its relationship with the maximum dynamic values of the working fluid pressure in the hydraulic system is also described. Experimental studies of the dynamics and acoustics of laboratory hydrostatic systems were performed. A dynamic model of a hydrostatic drive equipped with an accumulator was developed, which was used to perform simulation tests illustrating the impact of the accumulator capacity on the system's dynamics. Acoustic tests were carried out for a system with a linear hydrostatic drive simulator.
Rocznik
Strony
art. no. 186169
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, WrocławUniversity of Science and Technology, Poland
  • Faculty of Transport Engineering, Vilnius Gediminas Technical University, Lithuania
Bibliografia
  • 1. Banaszek A, Urbanski T. The flow calculation algorithm of submerged hydraulic cargo pumps working with reduced pump speed on modern product and chemical tankers. Procedia Computer Science 2020; 176: 2868-2877. https://doi.org/10.1016/j.procs.2020.09.267
  • 2. Banaszek A, Petrovic R. Problem of Non Proportional Flow of Hydraulic Pumps Working with Constant Pressure Regulators in Big Power Multipump Power Pack Unit in Open System. Tehnički vjesnik 2019; 26 (2): 294-301. https://doi.org/10.17559/TV-20161119215558
  • 3. Bury P, Stosiak M, Urbanowicz K, Kodura A, Kubrak M, Malesińska A. A case study of open-and closed-loop control of hydrostatic transmission with proportional valve start-up process. Energies 2022; 15: 1860. https://doi.org/10.3390/en15051860
  • 4. Directive 2000/14/EC of the European Parliament and of the Council of 8 May 2000 on the approximation of the laws of the Member States relating to the noise emission in the environment by equipment for use outdoors. European Agency for Safety and Health at Work 2019; 76 p. (https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02000L0014-20190726)
  • 5. Directive 2003/10/EC of the European parliament and of the council of 6 February 2003 on the minimum health and safety requirements regarding workers' exposure to the risks arising from physical agents (noise). Official Journal of the EU 2003; 7 p. (https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:042:0038:0044:EN:PDF)
  • 6. Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 on machinery and amending Directive 95/16/EC (recast).Official Journal of the EU 2006; 63 p. (https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:157:0024:0086:en:PDF)
  • 7. Doerfler P, Sick M, Coutu A. Flow-induced pulsation and vibration in hydroelectric machinery. Engineer’s guidebook for planning design and troubleshooting, Springer-Verlag 2013; 242 p. https://doi.org/10.1007/978-1-4471-4252-2
  • 8. Dui H, Zheng X, Zhao QQ, Fang Y. Preventive maintenance of multiple components for hydraulic tension systems. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2021; 23 (3): 489–497, http://doi.org/10.17531/ein.2021.3.9
  • 9. Esfandiari R. Numerical methods for engineers and scientists using MATLAB. CRC Press, Inc. 2017; 494p.
  • 10. Huang C, Cai D, Wang W, Li J, Duan J, Yang Z. Development of an automatic control system for a hydraulic pruning robot. Computers and Electronics in Agriculture 2023; 214: 108329. https://doi.org/10.1016/j.compag.2023.108329
  • 11. Karpenko M, Bogdevičius M. Review of energy-saving technologies in modern hydraulic drives. Science –Future of Lithuania -Mokslas –Lietuvos Ateitis 2017; 9(5): 553–558. https://doi.org/10.3846/mla.2017.1074
  • 12. Karpenko M, Prentkovskis O, Šukevičius Š. Research on high-pressure hose with repairing fitting and influence on energy parameter of the hydraulic drive. Eksploatacja i Niezawodność – Maintenance and Reliability 2022; 24(1): 25-32. http://doi.org/10.17531/ein.2022.1.4
  • 13. Karpenko M. Landing gear failures connected with high-pressure hoses and analysis of trends in aircraft technical problems. Aviation 2022; 26(3): 145–152. https://doi.org/10.3846/aviation.2022.17751
  • 14. Kowalska-Koczwara A, Stypula K. Assessment of the vibration influence on humans in buildings in the standards of different countries. Procedia Engineering 2016; 161: 970-974. https://doi.org/10.1016/j.proeng.2016.08.835
  • 15. Kuang H, Qiu Y, Liu C, Zheng X. A non-linear biodynamic model of seated human body exposed to vertical vibration with sensitivity analysis. Mechanical Systems and Signal Processing 2023; 204: 110758. https://doi.org/10.1016/j.ymssp.2023.110758
  • 16. Kudźma Z. Suppression of pressure pulsations and noise in hydraulic systems in transient and steady states. Wrocław University of Science and Technology Publishing House Wrocław 2012; 256 p.
  • 17. Liu Y, Xu Z, Hua L, Zhao X. Analysis of energy characteristics and working performance of novel controllable hydraulic accumulator with simulation and experimental methods. Energy Conversion and Management 2020; 221: 113196. https://doi.org/10.1016/j.enconman.2020.113196
  • 18. Niu S, Wang J, Zhao J, Shen W. Neural network-based finite-time command-filtered adaptive backstepping control of electro-hydraulic servo system with a three-stage valve. ISA Transactions 2023; In press: 1-17. https://doi.org/10.1016/j.isatra.2023.10.017
  • 19. Pang H, Wu D, Deng Y, Cheng Q, Liu Y. Effect of working medium on the noise and vibration characteristics of water hydraulic axial piston pump. Applied Acoustics 2021; 183: 108277. https://doi.org/10.1016/j.apacoust.2021.108277
  • 20. Qin Z. Basics of hydraulic systems, second edition. CRC Press, Inc. 2019; 338p.
  • 21. Rahmani R, Aliabadi M, Golmohammadi R, Babamiri M, Farhadian M. Body physiological responses of city bus drivers subjected tonoise and vibration exposure in working environment. Heliyon 2022; 8(8): 1-8. https://doi.org/10.1016/j.heliyon.2022.e10329
  • 22. Ren Y, Xi J, Meng F, Ma K. System modeling and analysis on stability of electro-hydraulic pressure regulating system for shift actuator including an accumulator, IFAC-PapersOnLine 2021; 54(10): 228-234. https://doi.org/10.1016/j.ifacol.2021.10.168
  • 23. Rituraj R, Vacca A. Investigation of flow through curved constraints for leakage flow modeling in hydraulic gear pumps. Mechanical Systems and Signal Processing 2021; 153: 107503. https://doi.org/10.1016/j.ymssp.2020.107503
  • 24. Śliwiński P. The influence of pressure drop on the working volume of a hydraulic motor. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2022; 24 (4): 747–757, http://doi.org/10.17531/ein.2022.4.15
  • 25. Stevanovic V, Prica S, Maslovaric B, Zivkovic B, Nikodijevic S. Efficient numerical method for district heating system hydraulics. Energy Conversion and Management 2007; 48(5): 1536-1543. https://doi.org/10.1016/j.enconman.2006.11.018
  • 26. Tianliang Lin, Yuanzheng Lin, Haoling Ren, Haibin Chen, Zhongshen Li, Qihuai Chen, A double variable control load sensing system for electric hydraulic excavator. Energy 2021; 223: 119999. https://doi.org/10.1016/j.energy.2021.119999
  • 27. Walgern J, Fischer K, Hentschel P, Kolios A. Reliability of electrical and hydraulic pitch systems in wind turbines based on field-data analysis. Energy Reports 2023; 9: 3273-3281, https://doi.org/10.1016/j.egyr.2023.02.007
  • 28. Yang C, Zhou L, Wang J, Xu T, Yang C, Ye G. Research on energy saving system of hydraulic excavator based on three-chamber accumulator. Journal of Energy Storage 2023; 72(Part D): 108571. https://doi.org/10.1016/j.est.2023.108571
  • 29. Yuan X, Shi S, Wang C, Wei L, Luo C, Chen J. Dynamic modeling method for an electro-hydraulic proportional valve coupled mechanical–electrical-electromagnetic-fluid subsystems. Journal of Magnetism and Magnetic Materials 2023; 587: 171312. https://doi.org/10.1016/j.jmmm.2023.171312
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad4f547d-d387-49da-b3a2-338ea6d9d714
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.