PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of initial density distribution in simulations of bone remodeling around dental implants

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the effect of initial density distribution upon the predicted density via numerical simulations of bone remodeling was evaluated. The main purpose was to correlate the numerical results with clinical data according to which the initial bone quantity is an essential factor for long term survival of dental implants. Methods: Two-strain energy density-based bone remodeling theories were employed, one which accounts for overload resorption and the second one, which does not. The remodeling parameters were derived from the mechanostat theory. Bone remodeling around an osseointegrated dental implant was simulated based on finite element method using a generic mandible plane model. A variable time step was introduced to increase the speed of the remodeling simulations by keeping the truncation errors small. The simulations were performed for several initial density distributions correlated with values from clinical classifications of bone quality. For each density value, the occlusal load was defined in two ways so that to consider normal and overload mastication forces, respectively. Results: The results showed that the initial density distribution influences the predictions of bone remodeling simulations. For the analyzed model, the remodeling algorithm predicted overload resorption only in the case of low initial density, which can be associated with low bone quality, which, from clinical perspective, may probably lead to implant loss. Conclusions: The paper demonstrated that when simulating bone remodeling around dental implants using finite element method, it is important to account for initial density distribution in correlation with the bone quantity.
Rocznik
Strony
23--31
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • University Politehnica of Bucharest, Faculty of Engineering and Management of Technological Systems, Strength of Materials Department, Bucharest, Romania
  • Romanian Research and Development Institute for Gas Turbines COMOTI, Research and Development for Satellites and Space Equipment Department, Bucharest, Romania
Bibliografia
  • [1] CARTER D.R., HAYES W.C., The compressive behavior of bone as a two-phase porous structure, J. Bone Joint Surg. Am., 1977, 59(7), 954–962.
  • [2] CHOU H.Y., JAGODNIK J.J., MUFTU S., Predictions of bone remodeling around dental implant systems, J. Biomech., 2006, 41(6), 1365-1373.
  • [3] FAEGH S., MÜFTÜ S., Load transfer along the bone-dental implant interface, J. Biomech., 2010, 43(9), DOI: 10.1016/j.jbiomech.2010.02.017.
  • [4] FROST H.M., Bone’s Mechanostat: A 2003 Update, Anat. Rec. A, 2003, 275(2), 1081–1101.
  • [5] HASAN I., RAHIMI A., KEILIG L., BRINKMANN K.T., BOURAUEL K., Computational simulation of internal bone remodelling around dental implants: a sensitivity analysis, Comput. Method Biomech., 2012, 15(8), 807–814.
  • [6] HELGASON B., PERILLI E., SCHILEO E., TADDEI F., BRYNJÓLFSSON S., VICECONTI M., Mathematical relationships between bone density and mechanical properties: A literature review, Clin. Biomech., 2008, 23(2), 135–146.
  • [7] HUISKENS R., WEINANS H., GROOTENBOER H., DALSTRA M., FUDALA B., SLOOFF T., Adaptive bone remodeling theory applied to prostetic design analysis, J. Biomech., 1987, 20(11–12), 1135–1150.
  • [8] LI J., LI H., SHI L., FOCK A.S., UCER C., DEVLIN H., HORNER K., SILIKAS N., A mathematical model for simulating the bone remodeling process under mechanical stimulus, Dent. Mater J., 2007, 23(9), 1073–1078.
  • [9] LI W., LIN D., CHEN J., ZHANG Z., LIAO Z., SWAIN M., LI Q., Role of Mechanical Stimuli in Oral Implantation, J. Biosci. Med., 2014, 2(4), DOI: 10.1002/ar.1092190104.
  • [10] LIAN Z., GUAN H., IVANOVSKI S., LOO Y.-C., JOHNSON N.W., ZHANG H., Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant, Int. J. Oral Maxillofac. Surg., 2010, 39(7), DOI: 10.1016/j.ijom.2010.03.020.
  • [11] LIN D., LI Q., LI W., DUCKMANTON N., SWAIN M., Mandibular bone remodeling induced by dental implant, J. Biomech., 2010, 43(2), 287–293.
  • [12] MAVROGENIS A.F., DIMITROIU R., PARVIZI J., BABIS G.C., Biology of implant osseointegration, J. Musculoskelet Neuronal Interact., 2009, 9(2), 61–71.
  • [13] MOLLY L., Bone density and primary stability in implant therapy, Clin. Oral Imp. Res., 2006, 17 (Suppl. 2), 124–135.
  • [14] MULLENDER M.G., HUISKES R., Proposal for the regulatory mechanism of Wolff's law, J. Orthop. Res., 1995, 13(4), DOI:10.1002/jor.1100130405.
  • [15] NORTON M.R., GAMBLE C., Bone classification: an objective scale of bone density using the computerized tomography scan, Clin. Oral Implan. Res., 2001, 12(1), DOI: 10.1034/j.1600-0501.2001.012001079.
  • [16] NUŢU E., GHEORGHIU H., Influence of the numerical method on the predicted bone density distribution in element based simulations, U.P.B. Sci. Bull. D., 2013, 75(2), 73–84.
  • [17] NUŢU E., Interpretation of parameters in strain energy density bone adaptation equation when applied to topology optimization of inert structures, Mechanika, 2015, 21(6), DOI:10.5755/j01.mech.21.6.12106.
  • [18] ROY S., DAS M., CHAKRABORTY P, BISWAS J.K., CHATTERJEE S., KHUTIA N., SAHA S., CHOWDHURY A.R., Optimal selection of dental implant for different bone conditions based on the mechanical response, Acta Bioeng. Biomech., 2017, 19(2), 11–20.
  • [19] RHO J.Y., HOBATHO M.C., ASHMAN R.B., Relations of Mechanical Properties to Density and CT Numbers in Human Bone, Med. Eng. Phys., 1995, 17(5), DOI: 10.1016/1350-4533(95)97314-F.
  • [20] SANTOS M.C.L.G., CAMPOS M.I.G., LINE S.R.P., Early dental implant failure: A review of the literature, Braz. J. Oral Sci., 2002, 1(3), 103–111.
  • [21] TANAKA E., YAMAMOTO S., NISHIDA T., AOKI Y., A mathematical model of bone remodeling under overload and its application to evaluation of bone resorption around dental implants, Acta Bioeng. Biomech., 1999, 1(1), 117–121.
  • [22] VIDYASAGAR L., APSE P., Biological response to dental implant loading/ overloading. Implant overloading: Empiricism or science?, Stomatologija, 2003, 5, 83–89.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad4ee285-b79e-4a5d-886b-0cd97fa0d2bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.