PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Electrokinetic remediation technology of heavy metal contaminated soil based on improving soil electrical conductivity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An electrokinetic remediation technique taking Cr(VI) as an example is proposed to improve the conductivity of contaminated soil, which significantly increases the current density in the soil. The improvement of soil conductivity was achieved by continuous spraying of NaCl solution with a concentration of 4 g·dm–3 on the soil surface. The distances of electrode pairs were 2.0 m and 1.5 m, respectively. The heavy metal-contaminated soil thickness was 25 cm, and the DC power supply voltage was 90 V. The experiment demonstrated that under the condition of continuous spraying of NaCl solution on the soil surface, the current density variation was related to the salt content in the soil, and the current density in the soil generally increased linearly with time. The effectiveness of soil remediation is related to the electric field strength and current density, and there exists an optimal electric field that can reduce the heavy metal content in the soil at any point by minimizing the electric field strength and current density. Most of the heavy metals can be concentrated within a diameter of about 15 cm around the anode under the optimal electric field, which can be remediated after removing the soil.
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • School of Earth Science and Engineering, Hohai University, Nanjing, China, 211106
autor
  • College of Environment, Hohai University, Nanjing, China, 210098
autor
  • College of Civil Engineering, Jiangsu Open University, Nanjing, China, 210098
autor
  • College of Environment, Hohai University, Nanjing, China, 210098
Bibliografia
  • [1] SHARMA S., TIWARI S., HASAN A., SAXENA V., PANDEY, L., Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils, Biotech, 2018, 8 (4), 1–18. DOI: 10.1007/513205-018-1237-8.
  • [2] WANG H.F., ZHAO B.W., XU J., CHE H., Technology and research progress on remediation of soils contaminated by heavy metals, Environ. Sci. Manage., 2009, 34 (11), 15–20.
  • [3] MILLER R.M., Biosurfactant-facilitated remediation of metal-contaminated soils, Environ. Health Persp., 1995, 103 (Suppl. 1), 59–62. DOI: 10.1289/ehp.95103s159.
  • [4] O'CONNOR D., PENG T., ZHANG J., TSANG D.C., ALESSI D.S., SHEN Z., BOLAN N., HOU D., Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials, Sci. Total Environ., 2018, 619, 815–826. DOI: 10.1016/j.scitotenv.2017.11.132.
  • [5] RAMAMURTHY A.S., VO D., LI X.J., QU J., Surfactant-enhanced removal of Cu(II) and Zn(II) from contaminated sandy soil, Water, Air, Soil Poll., 2008, 190 (1), 197–207. DOI: 10.1007/s11270-007-9592-9.
  • [6] NEJAD Z.D., JUNG M.C., KIM K.H., Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology, Environ. Geochem. Health, 2018, 40 (3), 927–953. DOI: 10.1007/s10653-017-9964-z.
  • [7] PANICHEV N., MANDIWANA K., KATAEVA M., SIEBERT S., Determination of Cr(VI) in plants by electrothermal atomic absorption spectrometry after leaching with sodium carbonate, Spectrochim. Acta Part B: Atomic Spectry., 2005, 60 (5), 699–703. DOI: 10.1016/j.sab.2005.02.018.
  • [8] VIZCAÍNO R.L., YUSTRES A., ASENSIO L., SAEZ C., CAÑIZARES P., RODRIGO M.A., NAVARRO V., Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning, Chemosphere, 2018, 199, 477–485.
  • [9] KOPTSIK G.N., Modern approaches to remediation of heavy metal polluted soils: A review, Eur. Soil Sci., 2014, 47 (7), 707–722. DOI: 10.1134/S1064229314070072.
  • [10] ZHANG Y., HUANG T., HUANG X., FAHEEM M., YU L., JIAO B., YIN G.Z., SHIAU Y.C., LI D., Study on electrokinetic remediation of heavy metals in municipal solid waste incineration fly ash with a three-dimensional electrode, RSC Adv., 2017, 7 (45), 27846–27852. DOI: 10.1039/C7RA01327B.
  • [11] TANG X., LI Q., WU M., LIN L., SCHOL Z., Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China, J. Environ. Manage., 2016, 181, 646–662. DOI: 10.1016/j.jenvman.2016.08.043.
  • [12] JIANG D., ZENG G., HUANG D., CHEN M., ZHANG C., HUANG C., WAN J., Remediation of contaminated soils by enhanced nanoscale zero-valent iron, Environ. Res., 2018, 163, 217–227. DOI: 10.1016/j.envres.2018.01.030.
  • [13] ZHAO G., LI J., REN X., CHEN C., WANG X., Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol., 2011, 45 (24), 10454–10462. DOI:10.1021/es203439v.
  • [14] FU R., WEN D., XIA X., ZHANG W., GU Y., Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes, Chem. Eng. J., 2017, 316, 601–608. DOI: 10.1016/j.cej.2017.01.092.
  • [15] ZHOU M., XU J., ZHU S., WANG Y., GAO H., Exchange electrode-electrokinetic remediation of Cr-contaminated soil using solar energy, Sep. Purif. Techn., 2018, 190, 297–306. DOI: 10.1016/j.seppur.2017.09.006.
  • [16] MAO X., HAN F.X., SHAO X., ARSLAN Z., MCCOMB J., CHANG T., GUO K., CELIK A., Effects of operation variables and electrokinetic field on soil washing of arsenic and caesium with potassium phosphate, Water, Air, Soil Poll., 2017, 228 (1), 1–16. DOI: 10.1007/s11270-016-3199-y.
  • [17] HUANG J., SCUDIERO E., CHOO H., CORWIN D.L., TRIANTAFILIS J., Mapping soil moisture across an irrigated field using electromagnetic conductivity imaging, Agric. Water Manage., 2016, 163, 285–294. DOI: 10.1016/j.agwat.2015.09.003.
  • [18] READ D.S., MATZKE M., GWEON H.S., NEWBOLD L.K., HEGGELUND L., ORTIZ M.D., LAHIVE E., SPURGEON D., SVENDSEN C., Soil pH effects on the interactions between dissolved zinc, non-nano and nano-ZnO with soil bacterial communities, Environ. Sci. Poll. Res., 2016, 23 (5), 4120–4128. DOI: 10.1007/s11356-015-4538-z.
  • [19] WU D., SENBAYRAM M., ZANG H., UGURLAR F., AYDEMIR S., BRÜGGEMANN N., KUZYAKOV Y., BOL R., BLAGODATSKAYA E., Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils, Appl. Soil Ecol., 2018, 129, 121–127. DOI: 10.1016/j.apsoil.2018.05.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad4b5e7a-6b40-4e43-98e1-18db3d40fc36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.