PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation and modelling of Friction Stir Processing of cast aluminium alloy AlSi9Mg

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Friction Stir Processing (FSP) is a novel solid state processing technique which can be used for microstructural modification of surface layers in metallic materials. This paper analyzes the effects of FSP process parameters on spindle torque acting on the tool and on the tool temperature. It has been shown that an increase in the rotational speed brings about a decrease in the torque and an increase of temperature. For temperature estimation in the stir zone a numerical model was applied, while for predicting a relationship between the spindle torque acting on the tool, rotational and travelling speeds and the down force, the artificial neural networks approach was employed. Light and electron (scanning and transmission) microscopy investigation showed that the FSP process reduces porosity and produces a more uniform distribution of second-phase particles.
Rocznik
Strony
893--904
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., fot., il.
Twórcy
  • Institute of Welding (Instytut Spawalnictwa), 16-18 Bl. Czesława St., 44-100 Gliwice, Poland
autor
  • AGH University of Science and Technology, Faculty of Metal Engineering and Industrial Computer Science, Cracow, Poland
  • Miami University, School of Engineering and Applied Science, Oxford 45056, Ohio, USA
Bibliografia
  • [1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Much, P. Templesmith, and C.J. Dawes, Friction-stir Butt Welding, GB Patent Application No 9125978.8, 1991.
  • [2] M.St. Węglowski and A. Pietras, “Friction stir processing - analysis of the process”, Archives of Metallurgy and Materials 56 (2), 779-788 (2011).
  • [3] R.S. Mishra, ”Friction stir welding and processing”, ASM International 1, 1-5 (2007).
  • [4] Z.Y. Ma, “Friction stir processing technology: a review”, Metallurgical and Materials Transactions A 39, 642-658 (2008).
  • [5] R.S. Mishra, Z.Y. Ma, and I. Charit, “Friction stir processing: a novel technique for fabrication of surface composite”, Materials Science and Engineering A 341, 307-310 (2003).
  • [6] K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, and T. Komazaki, “Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing”, Materials Science and Engineering A 437, 274-280 (2006).
  • [7] I. Charit and R.S. Mishra, “Low temperature superplasticity in a friction stir processed ultrafine grained Al-Zn-Mg-Sc alloy”, Acta Materialia 53, 4211-4223 (2005).
  • [8] Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31”, Materials Science and Engineering A 433, 50-54 (2006).
  • [9] Ch.B. Fuller and M.W. Mahoney, “The effect of friction stir processing on 5083-H321/5356 Al arc welds: Microstructural and mechanical analysis”, Metallurgical and Materials Trans.: Physical Metallurgy and Materials Science 37A, 3605-3615 (2006).
  • [10] P.L. Threadgill, A.J. Leonard, H. R. Shercliff, and P.J. Withers, “Friction stir welding of aluminium alloys”, Int. Materials Reviews 54, 49-93 (2009).
  • [11] S. Rajakumar and V. Balasubramanian, “Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters”, Materials and Design 40, 17-35 (2012).
  • [12] S. Cui, Z.W. Chen, and J.D. Robson, “A model relating tool torque and its associated power and specific energy to rotation and forward speeds during friction stir welding/processing”, Int. J. Machine Tools and Manufacture 50, 1023-1030 (2010).
  • [13] W.J. Arbegast, “A flow-partitioned deformation zone model for detected formation during friction stir welding”, Scripta Materialia 58, 372-376 (2008).
  • [14] A. Arora, R. Nandan, A.P. Reynolds, and T. DebRoy, “Torque, power requirement and stir zone geometry in friction stir welding through modelling and experiments”, Scripta Materialia 60, 13-16 (2009).
  • [15] H. Schmidt, J. Hattel, and J. Wert, “An analytical model for the heat generation in friction stir welding”, Modelling Simul. Mater. Sci. Eng. 12, 143-157 (2004).
  • [16] P. Kalya, K. Krishnamurthy, R.S. Mishra, and J.A. Baumann, “Specific energy and temperature mechanistic models for friction stir processing of AL-F357”, Proc. Friction Stir Welding and Processing IV, 113-125 (2007).
  • [17] C. Hamilton, S. Dymek, and A. Sommers, “A thermal model of friction stir welding in aluminum alloys”, Int. J. Machine Tools & Manufacture 48, 1120-1130 (2008).
  • [18] H.W. Zhang, Z. Zhang, and J.T. Chen, “The finite element simulation of the friction stir welding process”, Materials Science and Engineering A 403, 340-348 (2005).
  • [19] T. Long and A.P. Reynolds, “Parametric studies of friction stir welding by commercial fluid dynamics simulation”, Science and Technology 11, 200-208 (2006).
  • [20] H. Okuyucu, A. Kurt, and E. Arcaklioglu, „Artificial neural network application to the friction stir welding of aluminum plates”, Materials and Design 28, 78-84 (2007).
  • [21] L. Fratini, G. Buffa, and D. Palmeri, “Using a neural network for predicting the average grain size in friction stir welding processes”, Computers and Structures 87, 1166-1174 (2009).
  • [22] M.St. Węglowski and S. Dymek, “Relationship between Friction Stir Processing parameters and torque, temperature and the penetration depth of the tool”, Archives of Civil and Mechanical Engineering 13, 186-191 (2013).
  • [23] M.St. Węglowski and S. Dymek, “Microstructural modification of cast aluminium alloy AlSi9Mg via Friction Modified Processing”, Archives of Metallurgy and Materials 57 (1), 71-78 (2012).
  • [24] S. Cui and Z.W. Chen, “Effects of rotation speed and forward speed on stir zone formation during friction stir processing of Al-7Si-0.3Mg alloy”, Int. J. Society of Materials Engineering for Resources 17 (2), 158-162 (2010).
  • [25] T.S. Mahmoud and S.S. Mohamed, “Improvement of microstructural, mechanical and tribological characteristics of A413 cast Al alloys using friction stir processing”, Materials Science and Engineering A 558, 502-509 (2012).
  • [26] L.J. Baruch, R. Raju, and V. Balasubramanian, “Effect of tool pin profile on microstructure and hardness of friction stir processed aluminum die casting alloy”, Eur. J. Scientific Research 70 (3), 373-385 (2012).
  • [27] P. Uliasz, T. Knych, and A. Mamała, “A new industrial scale method of the manufacture of the gradient structure materials and its application”, Archives of Metallurgy and Materials 54, 711-721 (2009).
  • [28] S. Tatunchilar, M. Haghpanahi, M.K. Besharati Givi, P. Asadi, and P. Bahemmat, “Simulation of material flow in friction stir processing of a cast Al-Si alloy”, Materials and Design 40, 415-426 (2012).
  • [29] M.M. El-Rayes and E.A. El-Danaf, “The influence of multipass friction stir processing on the microstructural and mechanical properties of aluminum alloy 6082”, J. Materials Processing Technology 212, 1157-1168 (2012).
  • [30] Q. Liu, L. Ke, F. Liu, Ch. Huang, and L. Xiang, “Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing”, Materials and Design 45, 343-348 (2013).
  • [31] A. Mohammed, “Achieving ultrafine grains in Mg AZ31B-O alloy by cryogenic friction stir processing and machining”, Phd Thesis, University of Kentucky, Kentucky, 2011.
  • [32] R. Rojas, Neural networks. A Systematic Introduction, Springer-Verlag, Berlin 1996.
  • [33] V.S. Zolotorevsky, N.A. Belov, and M.V. Glazoff, Casting Aluminum Alloys, Elsevier, Amsterdam, 2007.
  • [34] T. Ciućka, “Analysis of AlSi9Mg alloy crystallization with use of ATND method”, Advances in Manufacturing Science and Technology 33 (2), 65-70 (2009).
  • [35] L. Karthikeyan, V.S. Senthilkumar, V. Balasubramanian, and S. Natarajan, “Mechanical property and microstructural changes during friction stir processing of cast aluminum 2285 alloy”, Material and Design 30, 2237-2242 (2009).
  • [36] T.S. Mahmoud, A.M. Gaafer, and T.A. Khalifa, “Effect of tool rotational and welding speeds on microstructural and mechanical characteristics of friction stir welded A319 cast Al alloy”, Materials Science and Technology 24, 553-559 (2008).
  • [37] M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, and S. Babu, “Influences of process parameters on tensile strength of friction stir welded cast A319 aluminium alloy joints”, Metals and Materials Int. 15, 313-320 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad46d19d-44d6-46ec-9eef-c1ee2a03bd09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.