Artur POŚWIATA

e-mail: a.poswiata@ichip.pw.edu.pl

Wydział Inżynierii Chemicznej i Procesowej, Politechnika Warszawska, Warszawa

Minimalizacja kosztów ogrzewania fluidalnego rozdrobnionego ciała stałego z wykorzystaniem egzergii gazu odlotowego

Wstęp

W poprzednich pracach [*Poswiata i Szwast, 2012; Poświata, 2012*].przedstawiono wyniki obliczeń optymalizacyjnych dla procesu ogrzewania rozdrobnionego ciała stałego we fluidalnym poziomym aparacie fluidalnym, w których uwzględniono dyspersję osiową przy przepływie cząstek ciała stałego. Jednak prezentowane dotychczas wyniki dotyczyły procesów, w których egzergia gazów odlotowych nie jest wykorzystywana w dalszych procesach

W niniejszej pracy przedstawiono wyniki optymalizacji procesu ogrzewania, w którym egzergia gazów opuszczających złoże fluidalne jest w całości wykorzystywana w dalszych procesach. W obliczeniach optymalizacyjnych poszukuje się profilu temperatury gazu wlotowego wzdłuż aparatu fluidalnego oraz całkowitego przepływu gazu, które minimalizują całkowity koszt procesu.

Model optymalizacyjny

Model optymalizacyjny procesu obejmuje oprócz matematycznego modelu procesu obejmuje również wskaźnik jakości. W niniejszych rozważaniach optymalizacyjnych jako wskaźnik jakości przyjęto funkcje opisującą całkowity koszt fluidalnego procesu ogrzewania, który jest wyrażony w jednostkach egzergii. Wyprowadzenie zastosowanego wskaźnika jakości można znaleźć w literaturze [*Berry, 2000; Poswiata i Szwast, 2010*], a jego ostateczna postać jest następująca:

$$I = \int_{0}^{t_{k}} \left(\frac{1}{2} A \tau_{g}^{2} - \frac{1}{2} A \tau_{k}^{2} + \kappa \right) dt$$
(1)

gdzie:

- τ_g i τ_k temperatury zastępcze, zdefiniowane jako różnica rzeczywistej temperatury i temperatury otoczenia, określającymi temperaturę gazu, odpowiednio na wlocie i wylocie ze złoża fluidalnego,
- A stała obliczana jako iloraz ciepła właściwego gazu i temperatury otoczenia,
- κ tzw. egzergetyczny współczynnik kosztów inwestycyjnych i przetłaczania gazu.

Pierwszy wyraz funkcji podcałkowej opisuje egzergię gazu włotowego do złoża fluidalnego, człon drugi opisuje egzergię gazu odpływającego ze złoża, która wykorzystana w innych procesach obniża koszty procesu ogrzewania, natomiast wyraz trzeci (współczynnik κ) uwzględnia koszt zakupu aparatury oraz koszt tłoczenia gazu przez aparat fluidalny.

Równanie bilansu entalpowego dla różniczkowej długości złoża fluidalnego można zapisać w następującej postaci [*Poświata i Szwast, 2012; Poświata, 2012*]:

$$\frac{d^2\tau}{dt^2} - P\frac{d\tau}{dt} + PK\beta(\tau_g - \tau) = 0$$
⁽²⁾

gdzie:

 τ – zastępcza temperatura ciała stałego,

- t bezwymiarowy przepływ gazu, stosunek aktualnego masowego przepływu gazu do masowego przepływu ciała stałego. Dla szybkości przepływu gazu stałej wzdłuż złoża wartość t jest jednoznacznie związana z odległością bilansowanego wycinka złoża od początku aparatu. W teorii optymalizacji wielkość t nazywana jest czasem, mimo że nie jest to czas fizyczny.
- β współczynnik opisujący kinetykę transportu ciepła między gazem i cząstkami ciała stałego,

K – stosunek średnich ciepeł właściwych gazu i ciała stałego,

P – parametr procesu, stosunek liczby *Pecleta* i całkowitego bezwymiarowego przepływu gazu, ale może być obliczony za pomocą innych parametrów procesu

$$P = \frac{Pe}{t_k} = \frac{u_s^2 \rho_s z}{D u_g \rho_g} \tag{3}$$

D - współczynnik dyspersji osiowej,

- u_g pozorna prędkość przepływu gazu,
- u_s pozorna prędkość przepływu ciała stałego,
- z wysokość złoża,
- ρ_g gęstość gazu,
- ρ_s gęstość ciała stałego.

Stosowany w obliczeniach optymalizacyjnych ciągły algorytm Zasady Maksimum (algorytm Pontryagina) [Sieniutycz, 1991] wymaga, aby model procesu opisany był układem równań różniczkowych zwyczajnych pierwszego rzędu. Zatem po przekształceniu równania (2) otrzymuje się

$$\frac{d\tau}{dt} = \theta \tag{4}$$

$$\frac{d\theta}{dt} = P\theta - PK\beta(\tau_g - \tau) \tag{5}$$

Opierając się na warunkach brzegowych *Danckwertsa* warunki brzegowe dla równań (4) i (5) można zapisać w postaci

$$t = 0 \qquad \theta = P\tau \tag{6}$$

$$t = t_k \qquad \theta = 0, \quad \tau = \tau_s \tag{7}$$

Warunek (6) jest słuszny dla przypadku, w którym początkowa, wlotowa temperatura ciała stałego jest równa temperaturze otoczenia.

Optymalizacja

Równania (4) i (5) nazywane są równaniami stanu lub transformacjami stanu. Korzystając z tych równań można zdefiniować hamiltonian, który ma następującą postać:

$$H = \frac{1}{2}A\tau_g^2 - \frac{1}{2}A\tau_k^2 + \kappa + z_\tau\theta + z_\theta \left[P\theta - PK\beta(\tau_g - \tau)\right]$$
(8)

gdzie: z_{θ} i z_{τ} – zmienne sprzężone.

Łatwo zauważyć, że hamiltonian (8) nie jest jawną funkcją tzw. *czasu t.* Proces taki nazywa się procesem autonomicznym. Dla procesów autonomicznych hamiltonian pozostaje stały wzdłuż całej trajektorii optymalnej. Ponadto dla wskaźnika jakości mającego postać równania (1) i swobodnego *czasu* końcowego, t_k , hamiltonian ten dla procesu optymalnego będzie równy 0.

Warunkiem optymalności temperatury włotowej gazu jest zerowanie się pochodnej hamiltonianu po tej temperaturze. Po wykorzystaniu wyrażenia na temperaturę wylotową gazu i uproszczeniu otrzymuje się

$$\frac{\partial H}{\partial \tau_g} = A\beta \left[\tau_g + (1 - \beta)(\tau_g - \tau) \right] - z_\theta P K \beta = 0$$
⁽⁹⁾

Pochodne hamiltonianu po zmiennych sprzężonych prowadzą do odtworzenia zmiennych stanu, natomiast pochodne po zmiennych stanu prowadzą do równań sprzężonych o następującej postaci:

$$\frac{dz_{\tau}}{dt} = -\frac{\partial H}{\partial \tau} = A\beta \left[\tau_g - \beta \left(\tau_g - \tau \right) \right] - z_{\theta} P K \beta$$
(10)

$$\frac{dz_{\theta}}{dt} = -\frac{\partial H}{\partial \theta} = -z_{\tau} - z_{\theta}P \tag{11}$$

Warunki brzegowe dla zmiennych sprzężonych wynikają z tzw. warunków transwersalności [*Sieniutycz, 1991*]. Dla początku trajektorii optymalnej zmienne sprzężone muszą spełniać następującą zależność

$$t = 0 \qquad z_{\tau} = -Pz_{\theta} \,, \tag{12}$$

natomiast dla końca trajektorii optymalnej wartości zmiennych sprzężonych są nieokreślone, ponieważ zadane są wartości zmiennych stanu.

Optymalizując rozważany proces należy scałkować różniczkowe równania stanu (4) i (5) oraz równania sprzężone (10) i (11) rozwiązując w każdym kroku całkowania algebraiczne równanie (9). Rozpoczęcie obliczeń optymalizacyjnych wymaga założenia nieznanych wartości zmiennych stanu i zmiennych sprzężonych.

Wykorzystując warunki brzegowe hamiltonian (8) przyjmuje postać analogiczną jak dla procesu bez dyspersji [*Poswiata i Szwast*, 2010]. Można zatem wykorzystać rozwiązanie dla takiego procesu do obliczenia wartości optymalnej temperatury gazu dla początku i końca trajektorii optymalnej

$$\hat{\tau}_{g} = \tau + \sqrt{2\kappa/(A\beta(2-\beta))} . \tag{13}$$

Dzięki temu rozpoczęcie obliczeń optymalizacyjnych jest możliwe po założeniu tylko jednej nieznanej wartości zmiennej stanu lub zmiennej sprzężonej.

Wyniki obliczeń optymalizacyjnych

Wszystkie obliczenia wykonano dla stałej włotowej temperatury ciała stałego równej temperaturze otoczenia i określonej temperatury końcowej ciała stałego ($\tau_s = 100$). Początkowa temperatura ciała stałego w aparacie dla t = 0 wynika z warunku brzegowego (6) i jest inna dla każdej wartości liczby *Pecleta*.

Na rys. 1 przedstawiono profile optymalnej temperatury gazu oraz temperatury ciała stałego wzdłuż aparatu dla kilku wartości liczby *Pecleta* oraz stałej wartości kinetycznego współczynnika β równej 1. Końcowa optymalna temperatura gazu jest zgodnie z równaniem (13) jednakowa dla wszystkich rozważanych przypadków, ponieważ stała jest temperatura końcowa ciała stałego, natomiast różny jest tzw. *czas* końcowy, *t_k*. Można jednak również na rys. 1 zauważyć, że zależność tzw. *czasu* końcowego od liczby *Pecleta* jest niemonotoniczna.

Rys. 1. Profile optymalnej temperatury gazu i temperatury ciała stałego

Zależność optymalnego *czasu* końcowego od liczby *Pecleta* przedstawiona jest na rys. 2. Wraz ze wzrostem wartości liczby *Pecleta* całkowity optymalny przepływ gazu, t_k , początkowo rośnie, a następnie po osiągnięciu wartości maksymalnej spada dążąc asymptotycznie do wartości przepływu gazu właściwej dla procesu z tłokowym przepływem ciała stałego. Podobny przebieg ma zależność $t_k = f(Pe)$, dla przypadku braku wykorzystywania egzergii gazów odlotowych

Rys. 2. Zależność optymalnego przepływu gazu (tzw. czasu procesu) od liczby $Pecleta, t_k = f(Pe$ Optymalne przepływy gazu dla procesów bez wykorzystywania egzergii gazów odlotowych są zdecydowanie mniejsze niż w przypadku, gdy jest wykorzystywana cała egzergia gazu odlotowego.

Na rys. 3 przedstawiono profile optymalnej temperatury gazu wlotowego oraz temperatury ciała stałego dla trzech wartości współczynnika kinetycznego β . Profile te przedstawiono dla zredukowanego *czasu* zdefiniowanego jako iloraz *czasu* bieżącego do końcowego *czasu* procesu. Jak pokazano na rys. 3 profile temperatury ciała stałego dla zredukowanego *czasu* są jednakowe dla wszystkich wartości współczynnika β , czyli są niezależne od kinetyki procesu wymiany ciepła. Natomiast profile optymalnej temperatury gazu zależą od wartości β , przeciwnie niż to było w przypadku braku wykorzystywania egzergii gazów odlotowych [*Poswiata i Szwast*, 2012; *Poświata*, 2012].

Zależność optymalnego *czasu* końcowego procesu od współczynnika β pokazano na rys. 4. We współrzędnych logarytmicznych zależność ta jest w bardzo dobrym przybliżeniu zależnością liniową.

Rys. 4. Zależność optymalnego tzw. *czasu* końcowego od współczynnika β dla stałej wartości liczby *Pecleta Pe* = 6,2

Wnioski

W pracy przedstawiono wyniki optymalizacji procesu ogrzewania rozdrobnionego ciała stałego w poziomym aparacie fluidalnym z dyspersyjnym przepływem ciała stałego wzdłuż aparatu oraz w przypadku wykorzystywania egzergii gazów odlotowych.

Na końcu i początku trajektorii optymalnej problem optymalizacyjny redukuje się do problemu jak bez dyspersji osiowej, co pozwala na zmniejszenie liczby zakładanych zmiennych w celu przeprowadzenia obliczeń optymalizacyjnych.

Dla stałej liczby *Pecleta* zależność optymalnego tzw. *czasu* procesu od kinetycznego współczynnika β jest liniowa w układzie podwójnie logarytmicznym. Profil temperatury ciała stałego dla procesu optymalnego przedstawiony dla zredukowanego *czasu* jest niezależny od wartości współczynnika β .

LITERATURA

- Berry R.S. i in., 2000. Thermodynamic optimization of finite time processes. Wiley, New York
- Poswiata A., Szwast Z., 2010. Minimum of exergy consumption in a horizontal fluidized heat exchanger. *Heat Trans. Res.*, **41**, 3, 265-282, DOI: 10.1615/HeatTransRes.v41.i3.50
- Poświata A., Szwast Z., 2012. Optymalizacja ogrzewania fluidalnego z dyspersyjnym przepływem ciała stałego. *Inż. Ap. Chem.*, 51, nr 6, 370-372
- Poświata A., 2012. Optimization of fluidized horizontal heat exchanger with lengthwise dispersion, Int. Symp. Advances in Computational Heat Transfer, CHT-12. Bath, England, 1-6 July
- Sieniutycz S., 1991. Optymalizacja w inżynierii procesowej. WNT, Warszawa