PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Simulation of Fatigue Fracture of the Turbine Disc

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of the crack propagation analysis of an aircraft engine turbine disc. In the first part of the work the finite element method was used for calculation of the stress state and the stress intensity factor (SIF, KI, K-factor) in the turbine disc with an embedded quarter-elliptical corner crack, subjected to low-cycle thermo-mechanical fatigue. To refine the K-factor calculation, specially degenerated finite elements were used. These elements provide stress singularity suitable for the linear-elastic material of the disc. The performed calculations yielded the stress intensity factor KI for different crack sizes. Subsequently, ΔK parameter was determined as a difference of the KI values calculated for the turbine’s speeds equal to 6373 and 14200 RPM. Based on the Paris-Erdogan equation and the obtained ΔK values, the fatigue crack growth plot for the turbine disc subjected to complex thermo-mechanical loads was determined.
Rocznik
Tom
Strony
114--122
Opis fizyczny
Bibliogr. 21 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
  • Rzeszów University of Technology, Rzeszów, Poland
Bibliografia
  • [1] Chan S.K, Tuba I.S. (1971). A finite element method for contact problems of solid bodies - Part II: Applications to turbine blade fastenings. International Journal of Mechanical Scientist; 13:627-39.
  • [2] Masataka, M. (1992). Root and groove contact analysis for steam turbine blades. Japan Society Mech. Eng. Int. J., 35:508-14.
  • [3] Meguid S.A, Kanth P.S, Czekanski A. (2000). Finite element analysis of fir-tree region in turbine disc. Finite Element in Analysis and Design, 35:305-17.
  • [4] Papanikos P, Meguid S.A, Stjepanovic Z. (1998). Three-dimensional nonlinear finite element analysis of dovetail joints in aero-engine discs. Finite Element in Analysis and Design, 29:173-86.
  • [5] Zboinski, G. (1995). Physical and geometrical non-linearities in contact problems of elastic turbine blade attachments. J Mech. Eng. Sci., 209:273-86.
  • [6] McEvily, A. (2004). Failures in inspection procedures: case studies. Engineering Failure Analysis, 11:167-76.
  • [7] Barlow K.W., Chandra R. (2005). Fatigue crack propagation simulation in an aircraft engine fan blade attachment. International Journal of Fatigue, 27:1661-1668.
  • [8] Slavik D., McClain R., Levis K. (2000). Stress intensity predictions with ANSYS for use in Aircraft engine component life prediction. Fatigue and Fracture Mechanics, Vol. 31(2000), 371-390.
  • [9] Zhuang, W. Z. (2000). Prediction of crack growth from bolt holes in a disc. International Journal of Fatigue, Vol. 22(2000), p. 241-250.
  • [10] Shlyannikov V., Iltchenko B., Stepanov N. (2001) Fracture analysis of turbine disks and computational-experimental background of the operational decisions. Engineering Failure Analysis, Vol. 8(2001), p. 461-475.
  • [11] Witek, L., Failure analysis of turbine disc of an aero engine, Engineering Failure Analysis, Vol:13 Issue: 1, Elsevier, 2006.
  • [12] Witek, L. Experimental crack propagation and failure analysis of the first stage compressor blade subjected to vibration, Engineering Failure Analysis Vol. 16, Issue: 7, Elsevier, 2009.
  • [13] Witek, L. Experimental crack propagation and failure analysis of the first stage compressor blade subjected to vibration, Engineering Failure Analysis Vol. 16, Issue: 7, Elsevier, 2009.
  • [14] Witek, L. (2011) Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue. Engineering Failure Analysis, Vol. 18(4), Elsevier Science.
  • [15] Witek L., Orkisz, M.. Wygonik P., Musili D. N., Kowalski T. (2011). Fracture analysis of a turbine casing. Engineering Failure Analysis, Vol. 18(3), Elsevier Science.
  • [16] Witek L., Numerical stress and crack initiation analysis of the compressor blades after foreign object damage subjected to high-cycle fatigue, Engineering Failure Analysis, Volume: 11, Issue:8, Elsevier Science, 2011.
  • [17] Witek, L. (2011). Stress intensity factor calculations for the compressor blade with half-elliptical surface crack using Raju-Newman solution. Fatigue of Aircraft Structures, Issue 2011. Institute of Aviation Scientific Publications, Warsaw, Poland.
  • [18] MSC-PATRAN User’s manual, MSC Corporation, Los Angeles; 2009.
  • [19] ABAQUS User’s Manual, ver. 6.8, Abaqus Inc.; 2009.
  • [20] Anderson T. L., Fracture mechanics. Fundamentals and applications, CRC Press Inc, Boca Raton, Florida, 1991.
  • [21] Aerospace Structural Metals Handbook, US Air Force CRDA/Purdue University, 37th Edition, vol. 5, 2004.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad466afe-9900-493f-af64-bd35b1f09213
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.