PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mode conversion in two-dimensional magneto-photonic crystal waveguide made by fully compatible optical sol-gel matrix

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we have reported a theoretical study of the mode conversion in two-dimensional magneto-photonic crystal waveguide. The structure is formed by a triangular lattice of air holes embedded in a composite matrix SiO2/ZrO2 or SiO2/TiO2. These new magneto-optical materials are developed by organic-inorganic sol-gel process and doped with ferrite of cobalt nanoparticles (CoFe2O4). The modal birefringence and conversion output have been calculated by varying, respectively, the film thickness and the magnetic nanoparticles concentration. The obtained results show an enhancement in the TE-TM mode conversion. Thus, when the amount of cobalt ferrite nanoparticles reaches 39% into sol-gel matrix, the efficiency can reach 95% which proves that such structures have very promising potential for creating integrated optical isolators.
Czasopismo
Rocznik
Strony
565--576
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Laboratoire d’Analyse des Signaux et Systèmes (LASS), Département d’Electronique, Faculté de Technologie, Université Mohamed Boudiaf de M’sila, BP.166, Route Ichebilia, M’sila 28000, Algeria
autor
  • Laboratoire d’Analyse des Signaux et Systèmes (LASS), Département d’Electronique, Faculté de Technologie, Université Mohamed Boudiaf de M’sila, BP.166, Route Ichebilia, M’sila 28000, Algeria
  • Laboratoire d’Analyse des Signaux et Systèmes (LASS), Département d’Electronique, Faculté de Technologie, Université Mohamed Boudiaf de M’sila, BP.166, Route Ichebilia, M’sila 28000, Algeria
Bibliografia
  • [1] BAHLMANN N., LOHMEYER M., ZHUROMSKYY Q., DÖTSCH H., HERTEL P., Nonreciprocal coupled waveguides for integrated optical isolators and circulators for TM-modes, Optics Communications 161(4–6), 1999, pp. 330–337.
  • [2] BAHLMANN N., LOHMEYER M., DÖTSCH H., HERTEL P., Integrated magneto-optic Mach–Zehnder interferometer isolator for TE modes, Electronics Letters 34(22), 1998, pp. 2122–2123.
  • [3] XIAOYUN GUO, ZAMAN T., RAM R.J., Magneto-optical semiconductor waveguides for integrated isolators, Proceedings of SPIE 5729, 2005, pp. 152–159.
  • [4] LANO G.E., PINYAN C., Optical isolators direct light the right way: fiberoptic components handbook, Laser Focus World 31(7), 1995, pp. 125–127.
  • [5] LOHMEYER M., BAHLMANN N., ZHUROMSKYY O., DÖTSCH H., HERTEL P., Phase-matched rectangular magnetooptic waveguides for applications in integrated optics isolators: numerical assessment, Optics Communications 158(1–6), 1998, pp. 189–200.
  • [6] HUANG M., XU Z.-C., Wavelength and temperature characteristics of BiYbIG film/YIG crystal composite structure for magneto-optical applications, Applied Physics A 81(1), 2005, pp. 193–196.
  • [7] HUTCHINGS D.C., Prospects for the implementation of magneto-optic elements in optoelectronic integrated circuits: a personal perspective, Journal of Physics D: Applied Physics 36(18), 2003, pp. 2222–2230.
  • [8] HOCINI A., BOUMAZA T., BOUCHEMAT M., ROYER F., JAMON D., ROSSEAU J.J., Birefringence in magneto-optical rib waveguides made by SiO2/TiO2 doped with γ -Fe2O4, Microelectronics Journal 39(1), 2008, pp. 99–102.
  • [9] ROYER F., JAMON D., BROQUIN J.-E., AMATA H., KEKESI R., NEVEU S., BLANC-MIGNON M.-F., GHIBAUDO E., Fully compatible magneto-optical sol-gel material with glass waveguides technologies: application to mode converters, Proceedings of SPIE 7941, 2011, article 794106.
  • [10] SHOJI Y., MIZUMOTO T., YOKOI H., HSIEH I.-W., OSGOOD R.M., JR, Magneto-optical isolator with silicon waveguides fabricated by direct bonding, Applied Physics Letters 92(7), 2008, article 071117.
  • [11] JOUDRIER A.-L., COUCHAUD M., MORICEAU H., BROQUIN J.-E., FERRAND B., DESCHANVRES J.-L., Direct bonding conditions of ferrite garnet layer on ion-exchanged glass waveguides, Physica Status Solidi (A) 205(10), 2008, pp. 2313–2316.
  • [12] CHOUEIKANI F., ROYER F., JAMON D., SIBLINI A., ROUSSEAU J.J., NEVEU S., CHARARA J., Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix, Applied Physics Letters 94(5), 2009, article 051113.
  • [13] KAHLOUCHE A., HOCINI A., KHEDROUCHE D., Band-gap properties of 2D photonic crystal made by silica matrix doped with magnetic nanoparticles, Journal of Computational Electronics 13(2), 2014, pp. 490–495.
  • [14] Photonic Component Design Suite, BandSOLVE, BeamPROP from Rsoft Inc., www.rsoftdesign.com
  • [15] MATTHEWS A., WANG X.-H., KIVSHAR Y., GU M., Band-gap properties of two-dimensional low-index photonic crystals, Applied Physics B 81(2–3), 2005, pp. 189–192.
  • [16] DYOGTYEV A.V., SUKHOIVANOV I.A., DE LA RUE R.M., Photonic band-gap maps for different two dimensionally periodic photonic crystal structures, Journal of Applied Physics 107(1), 2010, article 013108.
  • [17] AMATA H., ROYER F., CHOUEIKANI F., JAMON D., BROQUIN J.-E., PLENET J.C., ROUSSEAU J.J., Magnetic nanoparticles-doped silica layer reported on ion-exchanged glass waveguide: towards integrated magneto-optical devices, Proceedings of SPIE 7719, 2010, article 77191G.
  • [18] WITTEKOEK S., POPMA T.J.A., ROBERTSON J.M., BONGERS P.F., Magneto-optic spectra and the dielectric tensor elements of bismuth substituted iron garnets at photon energies between 2.2–5.2 eV, Physical Review B 12(7), 1975, p. 2777.
  • [19] ROYER F., JAMON D., ROUSSEAU J.J., CABUIL V., ZINS D., ROUX H., BOVIER C., Experimental investigation on γ -Fe2O3 nanoparticles Faraday rotation: particles size dependence, European Physical Journal Applied Physics 22(2), 2003, pp. 83–87.
  • [20] KAHLOUCHE A., HOCINI A., KHEDROUCHE D., Mode conversion in 2D magneto photonic crystals made of SiO2/ZrO2 matrix doped with magnetic nanoparticles, Acta Physica Polonica A 127(4), 2015, pp. 1208–1210.
  • [21] DAVIES H.W., LLEWELLYN J.P., Magneto-optic effects in ferrofluids, Journal of Physics D: Applied Physics 13(12), 1980, pp. 2327–2337.
  • [22] DONATINI F., JAMON D., MONIN J., NEVEU S., Experimental investigation of longitudinal magneto-optic effects in four ferrite ferrofluids in visible-near infrared spectrum, IEEE Transactions on Magnetics 35(5), 1999, pp. 4311–4317.
  • [23] BOURAS M., HOCINI A., Mode conversion in magneto-optic rib waveguide made by silica matrix doped with magnetic nanoparticles, Optics Communications 363, 2016, pp. 138–144.
  • [24] HOCINI A., BOUMAZA T., BOUCHEMAT M., CHOUEIKANI F., ROYER F., ROUSSEAU J.J., Modeling and analysis of birefringence in magneto-optical thin film made by SiO2/ZrO2 doped with ferrite of cobalt, Applied Physics B 99(3), 2010, pp. 553–558.
  • [25] KEKESI R., ROYER F., JAMONA D., BLANC-MIGNON M.F., ABOU-DIWAN E., CHATELON J.P., NEVEU S., TOMBACZ E., 3D magneto-photonic crystal made with cobalt ferrite nanoparticles silica composite structured as inverse opal, Optical Materials Express 3(7), 2013, pp. 935–947.
  • [26] HOCINI A., BOUCHELAGHEM A., SAIGAA D., BOURAS M., BOUMAZA T., BOUCHEMAT M., Birefringence properties of magneto-optic rib waveguide as a function of refractive index, Journal of Computational Electronics 12(1), 2013, pp. 50–55.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad459a0b-2a89-4342-b131-4af162a87235
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.