PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magma mingling textures in granitic rocks of the eastern part of the Strzegom-Sobótka Massif (Polish Sudetes)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many granitic intrusions display evidence of magma mixing processes. The interaction of melts of contrasting composition may play a significant role during their generation and evolution. The Strzegom-Sobótka massif (SSM), located in the Sudetes (SW Poland) in the north-eastern part of the Bohemian Massif of the Central European Variscides, exhibits significant evidence of magma mingling on the macro- and micro-scales. The massif is a composite intrusion, with four main varieties: hornblende-biotite granite (with negligible amount of hornblende) and biotite granite in the western part, and two-mica granite and biotite granodiorite in the eastern part. Field evidence for magma mingling is easily found in the biotite granodiorite, where dark enclaves with tonalitic composition occur. Enclaves range from a few centimeters to half a meter in size, and from ellipsoidal to rounded in shape. They occur individually and in homogeneous swarms. The mixing textures in the enclaves include fine-grained texture, acicular apatite, rounded plagioclase xenocrysts, ocellar quartz and blade-shaped biotite. The most interesting feature of the enclaves is the presence of numerous monazite-(Ce) crystals, including unusually large crystals (up to 500 μm) which have grown close to the boundaries between granodiorite and enclaves. The crystallization of numerous monazite grains may therefore be another, previously undescribed, form of textural evidence for interaction between two contrasting magmas. The textures and microtextures may indicate that the enclaves represent globules of hybrid magma formed by mingling with a more felsic host melt. Chemical dating of the monazite yielded an age of 297±11 Ma.
Rocznik
Strony
143--160
Opis fizyczny
Bibliogr. 103 poz., rys., tab.
Twórcy
  • Faculty of Geology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland.
  • Faculty of Geology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland.
Bibliografia
  • 1. Awdankiewicz, M., Awdankiewicz, H., Rapprich, V. and Starkova, M. 2014. A Permian andesitic tuff ring at Rožmital (the Intra-Sudetic Basin, Czech Republic) - evolution from explosive to effusive and highlevel intrusive activity. Geological Quarterly, 58 (4), 759-778.
  • 2. Bacon, C.R. 1986. Magmatic inclusions in silicic and intermediate volcanic rocks. Journal of Geophysical Research, Solid Earth, 91 (B6), 6091-6112.
  • 3. Bacon, C.R. and Druitt, T.H. 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contribution to Mineralogy and Petrology, 98, 224-256.
  • 4. Barbarin, B. 1988. Field evidence for successive mixing and mingling between the Piolard Diorite and the Saint- Julien-la-Vêtre Monzogranite (Nord-Forez, Massif Central, France). Canadian Journal of Earth Sciences, 25, 49-59.
  • 5. Barbarin, B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Neva-Text-fig. 8. Monazite weighted average ages of 87 point analyses da batholith, California: nature, origin, and relations with the hosts. Lithos, 80, 155-177.
  • 6. Barbarin, B. and Didier, J. 1991. Microscopic features of mafic microgranular enclaves. In: Didier, J. and Barbarin, B. (Eds), Enclaves and granite petrology, pp. 253-262. Elsevier; Amsterdam.
  • 7. Barbarin, B. and Didier, J. 1992. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 145-153.
  • 8. Baxter, S. and Feely, M. 2002. Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76, 63-74.
  • 9. Birski, Ł., Słaby, E. and Domańska-Siuda, J. 2018. Origin and evolution of volatiles in the Central Europe late Variscan granitoids, using the example of the Strzegom-Sobótka Massif, SW Poland. Mineralogy and Petrology, DOI: 10.1007/ s00710-018-0615-6
  • 10. Bottinga, Y., Kudo, A. and Weill, D. 1966. Some observations on oscillatory zoning and crystallization of magmatic plagioclase. American Mineralogist, 51, 792-806.
  • 11. Broska, I., Petrík, I. and Williams, C.T. 2000. Coexisting monazite and allanite in peraluminous granitoids of the Tribeč Mountains, Western Carpathians. American Mineralogist, 85, 22-32.
  • 12. Bruckener, H.K., Blusztajn, J. and Bakun-Czubarow, N. 1996. Trace element and Sm-Nd ‘age’ zoning in garnets from peridotites of the Caledonian and Variscan mountains and tectonic implications. Journal of Metamorphic Geology, 14, 61-73.
  • 13. Budzyń, B., Harlov, D.E., Williams, M.L. and Jercinovic, M.J. 2011. Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist, 96, 1547-1567.
  • 14. Castro, A., Moreno-Ventas, I. and de la Rosa, J.D. 1990. Microgranular enclaves as indicators of hybridization processes in granitoid rocks, Hercynian Belt, Spain. Geological Journal, 25, 391-404.
  • 15. Chappell, B.W. and White, A.J.R. 1991. Restite enclaves and the restite model. In: Didier, J., and Barbarin, B. (Eds), Enclaves and Granite Petrology, pp. 375-381. Elsevier; Amsterdam.
  • 16. Chappell, B.W., White, A.J.R. and Wybom, D. 1987. The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology, 28, 1111-1138.
  • 17. Chen, S., Niu, Y., Sun, W., Zhang, Y., Li, J., Guo, P. and Sun, P. 2015. On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids: Evidence from the Baojishan pluton in the North Qilian orogen, China. Mineralogy and Petrology, 109, 577-596.
  • 18. Chen, W.F., Chen, P.R., Huang, H.Y., Ding, X. and Sun, T. 2007. Chronological and geochemical studies of granite and enclave in Baimashan pluton, Hunan, South China: Science in China. Series D, Earth Sciences, 50, 1606-1627.
  • 19. Chen, Y.D., Price, R.C., White, A.J.R. and Chappell, B.W. 1990. Mafic inclusions from the Glenbog and Blue Gum Granite Suites, southeastern Australia. Journal of Geophysical Research, 95, 17,757-17,785.
  • 20. Clemens, J.D. and Elburg, M.A. 2013. Comment - Origin of enclaves in S-type granites of the Lachlan Fold Belt. Lithos, 175-176, 351-352.
  • 21. Collins, W.J., Richards, S.R., Healy, B.E. and Ellison, P.I. 2000. Origin of heterogeneous mafic enclaves by two-stage hybridization in magma conduits (dykes) below and in granitic magma chambers. Transactions of the Royal Society of Edinburgh. Earth Sciences, 91, 27-45.
  • 22. Dahlquist, J.A. 2002. Mafic microgranular enclaves: Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 15, 643-655.
  • 23. Didier, J. 1973. Granites and their enclaves; the bearing of enclaves on the origin of granites, 393 p. Elsevier Scientific Pub. Co.; Amsterdam, London & New York.
  • 24. Didier, J. and Barbarin B. 1991. The different types of enclaves in granites- Nomenclature. In: Didier, J. and Barbarin, B. (Eds), Enclaves and granite petrology, pp. 19-23. Elsevier; Amsterdam.
  • 25. Dini, A., Rocchi, S. and Westerman, D.S. 2004. Reaction microtextures of REE-Y-Th-U accessory minerals in the Monte Capanne pluton, Elba Island, Italy): a possible indicator of hybridization processes. Lithos, 78, 101-118.
  • 26. Dodge, F.D.W. and Kistler, R.W. 1990. Some additional observations on inclusions in the granitic rocks of the Sierra Nevada. Journal of Geophysical Research Atmospheres, 95, 17841-17848.
  • 27. Domańska-Siuda, J. 2007. The granitoid Variscan Strzegom-Sobótka massif. In: Kozłowski, A. and Wiszniewska, J. (Eds), Granitoids in Poland. Archivum Mineralogiae Monograph, 1, 179-191.
  • 28. Domańska, J. and Słaby, E. 2004. The hornblende-biotite-granite from Strzegom-Sobótka massif - parental magma evolution. Mineralogical Society of Poland, Special Papers, 24, 131-134.
  • 29. Domańska-Siuda, J. and Słaby, E. 2005. One-sided contamination of lamprophyric melt drops in hornblende-biotite granite magma chamber - a case study of Strzegom massif (SW Poland). Mineralogical Society of Poland, Special Papers, 25, 67-70.
  • 30. Domańska-Siuda, J., Słaby, E. and Szuszkiewicz, A. 2019. Ambiguous isotopic and geochemical signatures resulting from limited melt interactions in a seemingly composite pluton: a case study from the Strzegom-Sobótka Massif (Sudetes, Poland). International Journal of Earth Sciences. DOI: 10.1007/s00531-019-01687-w 158 JUSTYNA DOMAŃSKA-SIUDA AND BOGUSŁAW BAGIŃSKI
  • 31. Dorais, M.J., Lira, R. and Chen, Y. 1997. Origin of biotite-apatite- rich enclaves, Achala Batholith, Argentina. Contributions to Mineralogy and Petrology, 130, 31-46.
  • 32. Dubińska, E., Bylina, P., Kozlowski, A., Dörr, W., Nejbert, K. and Schastok, J. 2004. U-Pb dating of serpentinization: Hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chemical Geology, 203, 183-203.
  • 33. Elburg, M.A. 1996. Evidence of isotopic equilibration between microgranitoid enclaves and host granodiorite, Warburton granodiorite, Lachlan fold belt, Australia. Lithos, 38, 1-22.
  • 34. Femandez, A. and Barbarin, B. 1991. Relative rheology of coeval mafic and felsic magmas: nature of resulting interaction processes. Shape and mineral fabrics of maficc microgranular enclaves. In: Didier, J. and Barbarin, B. (Eds), Enclaves and granite petrology, pp. 116-128. Elsevier; Amsterdam.
  • 35. Fershtater, G.B. and Borodina, N.S. 1977. Petrology of autoliths in granitic rocks. International Geology Review, 19, 458-468.
  • 36. Fershtater, G.B. and Borodina, N.S. 1991. Enclaves in the Hercynian granitoids of the Ural Mountains, USSR. In: Didier, J. and Barbarin, B. (Eds), Enclaves and granite petrology, pp. 83-94. Elsevier; Amsterdam.
  • 37. Flood, R.H. and Shaw, S.E. 2014. Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia: Pressure quench cumulates. Lithos, 198-199, 92-102.
  • 38. Förster, H.-J. 1998. The chemical composition of REE-Y-Th- U-rich accessory minerals in peraluminous granites of the Erzegebirge-Fichtelgebirge region, Germany, Part I: The monazite-(Ce)-brabantite solid solution series. American Mineralogist, 83, 259-272.
  • 39. Franke, W. 2000. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geological Society, London, Special Publications, 179, 35-61.
  • 40. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42, 2033-2048.
  • 41. Gerdes, A. and Wörner, G. 2000. Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg Pluton, Austria. Geological Society, London, Special Publications, 179, 415-431.
  • 42. Henk, A. 1997. Gravitational orogenic collapse vs plate- boundary stresses: a numerical modelling approach to the Permo-Carboniferous evolution of Central Europe. Geologische Rundschau, 86, 39-55.
  • 43. Hibbard, M.J. 1991. Textural anatomy of twelve magma-mixed granitoid systems. In: Didier, J. and Barbarin, B. (Eds), Enclaves and granite petrology, pp. 431-444. Elsevier; Amsterdam.
  • 44. Janoušek, V., Bowes, D.R., Braithwaite, C. and Rogers, G. 2000. Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozárovice granodiorite, Central Bohemian Pluton, Czech Republic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91, 15-26.
  • 45. Janoušek, V., Braithwaite, C.J.R., Bowes, D.R. and Gerdes, A. 2004. Magma-mixing in the genesis of Hercynian calcalkaline granitoids: an integrated petrographic and geochemical study of the Sávaza intrusion, Central Bohemian Pluton, Czech Republic. Lithos, 78, 67-99.
  • 46. Jokubauskas, P., Bagiński, B., Macdonald, R. and Krzemińska, E. 2018. Multiphase magmatic activity in the Variscan Kłodzko-Złoty Stok intrusion, Polish Sudetes: evidence from SHRIMP U-Pb zircon ages. International Journal of Earth Sciences, 107, 1623-1639.
  • 47. Kröner, A. and Hegner, E. 1998. Geochemistry, single zircon ages and Sm-Nd systematics of granitoids rocks from the Góry Sowie Block (Owl Mts), Polish West Sudetes: evidence for early Paleozoic arc-related plutonism. Geological Society, London, 155, 711-724.
  • 48. Kryza, R. and Awdankiewicz, M. 2012. Ambiguous geological position of Carboniferous rhyodacites in the Intra-Sudetic Basin (SW Poland) clarified by SHRIMP zircon ages. Geological Quartely, 56 (1), 55-66.
  • 49. Kryza, R. and Fanning, M. 2004. The Góry Sowie granulites (Sudetes, SW Poland): preliminary results of SHRIMP U-Pb zircon geochronology. International workshop on petrogenesis of granulites and related rocks. Abstract Volume, pp. 45-46. Moravian Museum; Brno.
  • 50. Kryza, R. and Pin, C. 2010. The Central-Sudetic ophiolites (SW Poland): petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Research, 17, 292-305.
  • 51. Kural, S. and Morawski, T. 1968. Strzegom-Sobótka granitic massif. Biuletyn Instytutu Geologicznego, 227, 33-74.
  • 52. Laurent, A., Janousek, V., Magna, T., Schulmann, K. and Mikova, J. 2014. Petrogenesis and geochronology of a postorogenic calc-alkaline magmatic association: the Zulova Pluton, Bohemian Massif. Journal of Geosciences, 59, 415-440.
  • 53. Lee, C.-T.A., Morton, D.M., Farner, M.J. and Moitra, P. 2015. Field and model constraints on silicic melt segregation by compaction/hindered settling: The role of water and its effect on latent heat release. The American Mineralogist, 100, 1762-1777.
  • 54. Lisowiec, K., Budzyń, B., Słaby, E., Renno, A.D. and Götze, J. 2013. Fluid-induced magmatic and post-magmatic zircon and monazite patterns in granitoid pluton and related rhyolitic bodies. Chemie der Erde, 73, 163-179.
  • 55. Lisowiec. K,, Słaby, E. and Förster, H.J. 2015. Polytopic Vector Analysis (PVA) modelling of whole-rock and apatite chemistry from the Karkonosze composite pluton (Poland, Czech Republic). Lithos, 230, 105-120.
  • 56. Ludwig, K.R. 1991. ISOPLOT, a plotting and regression program for radiogenic data. USGS Open-file Report, 91-445.
  • 57. Maciejewski, S. and Morawski, T. 1975. Petrographic variability of granites from the Strzegom Massif. Kwartalnik Geologiczny, 19, 47-65.
  • 58. Majerowicz, A. 1963. Granit z okolic Sobótki i jego stosunek do osłony w świetle badań petrograficznych. Archivum Mineralogiae, 24, 127-237.
  • 59. Majerowicz, A. 1972. Strzegom-Sobótka granitoid massif. Geologica Sudetica, 6, 7-96.
  • 60. Marsh, B.D. 1996. Solidification fronts and magmatic evolution. Mineralogical Magazine, 60, 5-40.
  • 61. Mazur, S., Aleksandrowski, P., Turniak, K. and Awdankiewicz, M. 2007. Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes - an overview. In: Kozłowski, A. and Wiszniewska, J. (Eds), Granitoids in Poland. Archivum Mineralogiae Monograph, 1, 59-87.
  • 62. Michel, L., Wenzel, T. and Markl, G. 2016. Interaction between two contrasting magmas in the Albtal pluton (Schwarzwald, SW Germany): textural and mineral-chemical evidence. International Journal of Earth Sciences, 106, 1505-1524.
  • 63. Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica Cosmochimica Acta, 38 (5): 757-775.
  • 64. Oberc-Dziedzic, T., Kryza, R., Pin, C. and Madej, S. 2013. Variscan granitoid plutonism in the Strzelin Massif (SW Poland): petrology and age of the composite Strzelin granite intrusion. Geological Quarterly, 57, 269-288.
  • 65. Olivier, G.J.H. Corfu, F. and Krough, T.E. 1993. U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. Journal of the Geological Society London, 150, 355-369.
  • 66. Orsini, J.-B., Cocirta, C. and Zorpi, M.-J. 1991. Genesis of mafic microgranular enclaves through differentiation of basic magmas, mingling, and chemical exchange with their host granitoid magmas. In: Didier, J. and Barbarin, B. (Eds), Enclaves and granite petrology, pp. 445-465. Amsterdam; Elsevier.
  • 67. Perugini, D. and Poli, G. 2012. The mixing of magmas in plutonic and volcanic environments: Analogies and differences. Lithos, 153, 261-277.
  • 68. Phillips, G.N., Wall, V.J. and Clemens, J.D. 1981. Petrology of the Strathbogie Batholith: A cordierite-bearing granite. Canadian Mineralogist, 19, 47-63.
  • 69. Pietranik, A. and Wright, T.E. 2008. Processes and sources during late Variscan diorite-tonalite magmatism: insights from plagioclase chemistry (Gęsiniec intrusion, NE Bohemian massif, Poland). Journal of Petrology, 49, 1619-1645.
  • 70. Pietranik, A. and Koepke, J. 2009. Interactions between dioritic and granodioritic magmas in mingling zones: plagioclase record of mixing, mingling and subsolidus interactions in the Gęsiniec Intrusion, NE Bohemian Massif, SW Poland. Contributions to Mineralogy and Petrology, 158, 17-36.
  • 71. Pietranik, A. and Koepke, J. 2014. Plagioclase transfer from a host granodiorite to mafic microgranular enclaves: diverse records of magma mixing. Mineralalogy and Petrology, 108, 681-694.
  • 72. Pin, C., Puziewicz, J. and Duthou, J.-L. 1988. Studium izotopowe Rb-Sr oraz Sm-Nd masywu granitowego Strzegom-Sobótka. In: Petrologia i geologia fundamentu waryscyjskiegopolskiej części Sudetów, pp. 37-41. Wrocław.
  • 73. Pin, C., Puziewicz, J. and Duthou, J.-L. 1989. Ages and origins of a composite granite massif in the Variscan belt: a Rb-Sr study of the Strzegom-Sobótka massif, W. Sudetes (Poland). Neues Jahrbuch für Mineralogy (Abhandlungen), 160, 71-82.
  • 74. Poli, G.E. and Tommasini, S. 1991. Model for the origin and significance of microgranular enclaves in calc-alkaline granitoids. Journal of Petrology, 32, 657-666.
  • 75. Puziewicz, J. 1990, Masyw granitoidowy Strzegom-Sobótka. Aktualny stan badań. Archivum Mineralogiae, 45, 135-152.
  • 76. Reid, J.B., Evans, O.C. and Fates, D.G. 1983. Magma mixing in granitic rocks of the central Sierra Nevada, California. Earth and Planetary Science Letters, 66, 243-261.
  • 77. Scherrer, N., Engi, M., Gnos, E., Jacob, V. and Liechti, A. 2000. Monazite analysis: from sample preparation to microprobe age dating and REE quantification. Schweizerische Mineralogische und Petrographische Mitteilungen, 80, 93-105.
  • 78. Seydoux-Guillaume, A.-M., Paquette, J.-L., Wiedenbeck, M., Montel, J.-M. and Heinrich, W. 2002. Experimental resetting of the U-Th-Pb systems in monazite. Chemical Geology, 191, 165-181.
  • 79. Słaby, E. and Götze, J. 2004. Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modelling - a case study from the Karkonosze pluton (SW Poland). Mineralogical Magazine, 68, 561-577.
  • 80. Słaby, E, Seltmann, R., Kober, B., Müller, A., Galbarczyk-Gasiorkowska, L. and Jefferies, T. 2007. LREE distribution patterns in zoned alkali feldspar megacrysts from the Karkonosze pluton, Bohemian Massif - implications for parental magma composition. Mineralogical Magazine, 71, 155-178.
  • 81. Słaby, E. and Martin, H. 2008. Mafic and felsic magma interaction in granites: the Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49, 353-391.
  • 82. Słaby, E., Götze, J., Wörner G., Simon K., Wrzalik R. and Śmigielski M. 2008. K-feldspar phenocrysts in microgranular magmatic enclaves: a cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. Lithos, 105, 85-97.
  • 83. Sun, S.-S. and McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (Eds), Magmatism in the ocean basins. Geological Society, London, Special Publications, 42, 313-345.
  • 84. Szuszkiewicz, A. 2007. Secondary Ba-enriched domains in alkali feldspar phenocrysts from the monzogranites of the western part of the Strzegom-Sobótka massif, SW Poland. Mineralogia Polonica, 31, 279-282.
  • 85. Tsuchiyama, A. 1985. Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites. Contributions to Mineralogy and Petrology, 89, 1-16.
  • 86. Townsend, K.J., Miller, C.F, D’Andrea, J.L., Ayers, J.C., Harrison and T.M. and Coath, C.D. 2000. Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chemical Geo logy, 172, 95-112.
  • 87. Turniak, K., Tichomirowa, M. and Bombach, K. 2005. Zircon Pb-evaporation ages of granitoids from the Strzegom- Sobótka massif (SW Poland). Mineralogical Society of Poland, Special Papers, 25, 241-245.
  • 88. Turniak, K., Halas, S. and Wójtowicz, A. 2007. New K-Ar Cooling Ages of Granitoids from the Strzegom-Sobótka Massif, SW Poland. Geochronometria, 27, 5-9.
  • 89. Turniak, K., Domańska-Siuda, J. and Szuszkiewicz, A. 2011. Monazite from the eastern part of the Strzegom-Sobótka massif: chemical composition and CHIME ages. Mineralogical Society of Poland, Special Papers, 38, 178-179.
  • 90. Turniak, K., Mazur, S., Domańska-Siuda, J. and Szuszkiewicz, A. 2014. SHRIMP U-Pb zircon dating for granitoids from the Strzegom-Sobótka Massif, SW Poland: Constraints on the initial time of Permo-Mesozoic lithosphere thinning beneath Central Europe. Lithos, 208-209, 415-429.
  • 91. Vernon, R.H. 1984. Microgranitoid enclaves in granites - globules of hybrid magma quenched in a plutonic environment. Nature 309 (5967), p. 438.
  • 92. Vernon, R.H. 1991. Interpretation of microstructures of microgranitoid enclaves. In: Didier, J. and Barbarin, B. (Eds), Enclaves and granite petrology, pp. 277-291. Elsevier; Amsterdam.
  • 93. Vernon, R.H. 2010. Granites Really Are Magmatic: Using Microstructural Evidence to Refute Some Obstinate Hypotheses. In: Forster, M.A. and Gerald, J.D.F. (Eds), The Science of Microstructure - Part I. Journal of the Virtual Explorer https://doi.org/10.3809/jvirtex.2011.00264
  • 94. Waight, T.E., Dean, A.A., Maas, R. and Nicholls, I.A. 2000. Sr and Nd isotopic investigations towards the origin of feldspar megacrysts in microgranular enclaves in two I-type plutons of the Lachlan Fold Belt, southeast Australia. Australian Journal of Earth Science, 47, 1105-1112.
  • 95. Wark, D.A. and Miller, C.F. 1993. Accessory mineral behavior during differentiation of a granite suite: monazite, xenotime and zircon in the Sweetwater Wash pluton. Chemical Geology, 110, 49-67.
  • 96. White, A.J.R., Chappell, B.W. and Wyborn, D. 1999. Application of the restite model to the Deddick granodiorite and its enclaves - a reinterpretation of the observations and data of Maas et al. (1997). Journal of Petrology, 40, 413-421.
  • 97. Wiebe, R.A. 1968. Plagioclase stratigraphy: A record of magmatic conditions and events in a granite stock. American Journal of Science, 266 (8), 690-703.
  • 98. Wiebe, R.A. and Collins, W.J. 1998. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. Journal of Structural Geology, 20 (9-10), 1273-1289.
  • 99. Wiebe, R.A., Smith, D., Sturm, M., King, E.M. and Seckler, M.S. 1997. Enclaves in the Cadillac Mountain Granite (Coastal Maine) samples of hybrid magma from the base of the chamber. Journal of Petrology, 38, 393-423.
  • 100. Wolf, M.B. and London, D. 1985, Incongruent dissolution of REE- and Sr-rich apatite in peraluminous granitic liquids: Differential apatite, monazite, and xenotime solubilities during anatexis. American Mineralogist, 80, 765-775.
  • 101. Wyllie, P.J., Cox, K.G. and Biggar, G.M. 1962. The Habit of Apatite in Synthetic Systems and Igneous Rocks. Journal of Petrology, 3, 238-243.
  • 102. Zorpi, M.J., Coulon, C., Orsini, J.-B. and Corcita, C. 1989. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics, 157, 315-329.
  • 103. Žák, J., Verner K., Sláma, J., Kachlík, V. and Chlupáčová, M. 2013. Multistage magma emplacement and progressive strain accumulation in the shallow - level Krkonoše-Jizera plutonic complex, Bohemian Massif. Tectonics, 32, 1493-1512.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad444fd0-965a-47fa-9a25-896ca8064672
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.