Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the current era, concern about the responsible disposal of industrial waste and its reuse has increased in all societies from the industry. Therefore, the researchers’ institution is focusing its efforts on developing more environmentally friendly products from recycled waste, particularly in the area of sustainable construction. For instance, one of recycled waste is Coal Bottom Ash (CBA), a by-product of coal combustion that is produced in large quantities from thermal power plants. The aims of this study to investigate the physical, chemical and element characteristics of CBA obtained from thermal power plant in Malaysia. Also, CBA compared with cement characteristics to be used as cement replacement in the concrete mixture. Therefore, numerous tests have been performed to investigate CBA’s physical and chemical characteristics. For physical properties such as specific gravity, particle size analysis, fineness modulus, bulk density and loss on ignition. For chemical properties such as X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) in an effort to obtain sustainable materials from thermal power plant waste. Based on the findings in this study, it can be concluded that CBA can be utilized as cement substitute in the production of concrete mixtures.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1283--1292
Opis fizyczny
Bibliogr. 54 poz., fot., rys., tab.
Twórcy
autor
- Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Faculty of Civil Engineering Technology, Persiaran Tun Khalil Yaakob, 26300, Pahang, Malaysia
autor
- Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Faculty of Civil Engineering Technology, Persiaran Tun Khalil Yaakob, 26300, Pahang, Malaysia
- Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
Bibliografia
- [1] M. Bissoli-Dalvi, E.A. Nico-Rodrigues, C.E. de Alvarez, G.E.S. Fuica, D.C.G. Montarroyos, The sustainability of the materials under the approach of ISMAS. Construction and Building Materials 106, 357-363 (2016).
- [2] L. Poudyal, K. Adhikari, Environmental sustainability in cement industry: An integrated approach for green and economical cement production. Resources, Environment and Sustainability 4, 100024 (2021).
- [3] M.I. Al Biajawi, R. Embong, K. Muthusamy, N. Ismail, I.I. Obianyo, Recycled coal bottom ash as sustainable materials for cement replacement in cementitious Composites: A review. Construction and Building Materials 338, 127624 (2022).
- [4] A.A.M. Bohari, M. Skitmore, B. Xia, M. Teo, Green oriented procurement for building projects: Preliminary findings from Malaysia. Journal of Cleaner Production 148, 690-700 (2017).
- [5] J. Zhao, S. Li, Life cycle cost assessment and multi-criteria decision analysis of environment-friendly building insulation materials - A review. Energy and Buildings 254, 111582 (2022).
- [6] J. Opon, M. Henry, An indicator framework for quantifying the sustainability of concrete materials from the perspectives of global sustainable development. Journal of Cleaner Production 218, 718-737 (2019).
- [7] M. Spišáková, T. Mandičák, P. Mésároš, M. Špak, Waste Management in a Sustainable Circular Economy as a Part of Design of Construction. Applied Sciences 12, 4553 (2022).
- [8] A.M. Mansour, M.I. Al Biajawi, The effect of the addition of metakaolin on the fresh and hardened properties of blended cement products: A review. Materials Today: Proceedings (2022).
- [9] Z. Asif, Z. Chen, H. Wang, Y. Zhu, Update on air pollution control strategies for coal-fired power plants. Clean Technologies and Environmental Policy, 1-19 (2022).
- [10] M.I. Al Biajawi, R. Embong, K. Muthusamy, Influence of Mineral Admixtures on the Properties of Self-Compacting Concrete: An Overview. Construction, 62-751 (2021).
- [11] H. Zhou, R. Bhattarai, Y. Li, B. Si, X. Dong, T. Wang, Z. Yao, Towards sustainable coal industry: Turning coal bottom ash into wealth. Science of The Total Environment 804, 149985 (2022).
- [12] N. Ariffin, M. Abdullah, M.R.R.M.A. Zainol, M.S. Baltatu, L. Jamaludin, Effect of Solid to Liquid Ratio on Heavy Metal Removal by Geopolymer-Based Adsorbent. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing 12045 (2018).
- [13] C. Scope, M. Vogel, E. Guenther, Greener, cheaper, or more sustainable: Reviewing sustainability assessments of maintenance strategies of concrete structures. Sustainable Production and Consumption 26, 838-858 (2021).
- [14] T. Richardson, M. Orr, N. Watanabe, An overview of Sustainable Development Goal 12, The Routledge Handbook of Sport and Sustainable Development 289-301 (2022).
- [15] N. Ghazali, K. Muthusamy, R. Embong, I.S.A. Rahim, N.F.M. Razali, F.M. Yahaya, N.F. Ariffin, S.W. Ahmad, Effect of Fly Ash as Partial Cement Replacement on Workability and Compressive Strength of Palm Oil Clinker Lightweight Concrete. In: IOP Conference Series: Earth and Environmental Science, IOP Publishing 12038 (2021).
- [16] K. Mostaghimi, J. Behnamian, Waste minimization towards waste management and cleaner production strategies: a literature review. Environment, Development and Sustainability, 1-48 (2022).
- [17] M.I. Al Biajawi, R. Embong, K. Muthusamy, N. Mohamad, Effect of fly ash and coal bottom ash as alternative materials in the production of self compacting concrete: A review. In: AIP Conference Proceedings, AIP Publishing (2023).
- [18] A. Pandey, B. Kumar, Utilization of agricultural and industrial waste as replacement of cement in pavement quality concrete: a review. Environmental Science and Pollution Research, 1-43 (2022).
- [19] I.H. Aziz, M.M. Al Bakri Abdullah, M.A.A.M. Salleh, S. Yoriya, R.A. Razak, R. Mohamed, M.S. Baltatu, The investigation of ground granulated blast furnace slag geopolymer at high temperature by using electron backscatter diffraction analysis. Archives of Metallurgy and Materials 67 (2022).
- [20] H. Hamada, A. Alattar, B. Tayeh, F. Yahaya, A. Adesina, Sustainable Application of Coal Bottom Ash as Fine Aggregates in Concrete: A Comprehensive Review. Case Studies in Construction Materials, e01109 (2022).
- [21] M.A.O. Mydin, M.M.A.B. Abdullah, R.A. Razak, M.N.M. Nawi, P. Risdanareni, P. Puspitasari, A.V. Sandu, M.S. Baltatu, P. Vizureanu, Study on Polypropylene twisted bundle fiber reinforced lightweight foamed concrete. Buildings 13, 541 (2023).
- [22] M. Rafieizonooz, E. Khankhaje, S. Rezania, Assessment of environmental and chemical properties of coal ashes including fly ash and bottom ash, and coal ash concrete. Journal of Building Engineering, 104040 (2022).
- [23] N. Singh, R.-U.-D. Nassar, K. Shehnazdeep, B. Anjani, Microstructural characteristics and carbonation resistance of coal bottom ash based concrete mixtures. Magazine of Concrete Research 74, 364-378 (2022).
- [24] R. Embong, A. Kusbiantoro, K. Muthusamy, N. Ismail, Recycling of coal bottom ash (CBA) as cement and aggregate replacement material: a review. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 12035 (2021).
- [25] A.M. Hasim, K.A. Shahid, N.F. Ariffin, N.N. Nasrudin, M.N.S. Zaimi, M.K. Kamarudin, Coal bottom ash concrete: Mechanical properties and cracking mechanism of concrete subjected to cyclic load test. Construction and Building Materials 346, 128464 (2022).
- [26] R. Embong, A. Kusbiantoro, A. Abd Wahab, K. Muthusamy, Soluble Pozzolanic Materials from Coal Bottom Ash as Cement Replacement Material. In: Key Engineering Materials, Trans. Tech. Publ., 68-80 (2021).
- [27] A. Kusbiantoro, A. Hanani, R. Embong, Pozzolanic reactivity of coal bottom ash after chemically pre-treated with sulfuric acid. In: Materials Science Forum, Trans. Tech. Publications Ltd, 212-216 (2019). DOI: https://doi.org/10.4028/www.scientific.net/MSF.947.212
- [28] ASTM C618, ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. Annual Book of ASTM Standards 5 (2019). DOI: https://doi.org/10.1520/C0618-19
- [29] S.A. Mangi, M.H.W. Ibrahim, N. Jamaluddin, M.F. Arshad, S.W. Mudjanarko, Recycling of coal ash in concrete as a partial cementitious resource. Resources 8, 7-9 (2019). DOI: https://doi.org/10.3390/resources8020099
- [30] I.-H. Yang, J. Park, N. Dinh Le, S. Jung, Strength properties of high-strength concrete containing coal bottom ash as a replacement of aggregates. Advances in Materials Science and Engineering 2020 (2020).
- [31] N.K. Arora, T. Fatima, I. Mishra, M. Verma, J. Mishra, V. Mishra, Environmental sustainability: challenges and viable solutions. Environmental Sustainability 1, 309-340 (2018).
- [32] A.T. 19M/T 19-09, Standard method of test for bulk density (unit weight) and voids in aggregate (ASTM designation: C 29/C 29M-07), (2009).
- [33] C. ASTM, Standard test method for density, relative density (specific gravity), and absorption of fine aggregate, (2012).
- [34] A. Marto, C.S. Tan, Properties of coal bottom ash from power plants in Malaysia and its suitability as geotechnical engineering material. Jurnal Teknologi. 78 (2016).
- [35] N.I.R. Ramzi, S. Shahidan, M.Z. Maarof, N. Ali, Physical and chemical properties of coal bottom ash (CBA) from Tanjung Bin Power Plant. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing 12056 (2016).
- [36] M.H. Abdullah, R. Abuelgasim, A.S.A. Rashid, N.Z. Mohdyunus, Engineering properties of tanjung bin bottom ash, in: MATEC Web of Conferences, EDP Sciences 1006 (2018).
- [37] S.A. Mangi, M.H. Wan Ibrahim, N. Jamaluddin, M.F. Arshad, S.A. Memon, S. Shahidan, Effects of grinding process on the properties of the coal bottom ash and cement paste. Journal of Engineering and Technological Sciences 51, 1-13 (2019). DOI: https://doi.org/10.5614/j.eng.technol.sci.2019.51.1.1
- [38] ASTM D388-18a, ASTM D388-18a Standard Classification of Coals by Rank (2018). https://www.astm.org/DATABASE.CART/HISTORICAL/D388-18A. (accessed September 1, 2023).
- [39] ASTM D4326-13, ASTM D4326-13 Standard Test Method for Major and Minor Elements in Coal and Coke Ash By X-Ray Fluorescence (2013). https://www.astm.org/Standards/D4326. (accessed September 1, 2023).
- [40] M. Steveson, K. Sagoe-Crentsil, Relationships between composition, structure and strength of inorganic polymers. Journal of Materials Science 40, 2023-2036 (2005).
- [41] P. Duxson, J.L. Provis, G.C. Lukey, S.W. Mallicoat, W.M. Kriven, J.S.J. Van Deventer, Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 269, 47-58 (2005).
- [42] P. De Silva, K. Sagoe-Crenstil, V. Sirivivatnanon, Kinetics of geopolymerization: role of Al2O3 and SiO2. Cement and Concrete Research 37, 512-518 (2007).
- [43] N. Latifi, A. Marto, A.S.A. Rashid, J.L.J. Yii, Strength and physico-chemical characteristics of fly ash-bottom ash mixture. Arabian Journal for Science and Engineering 40, 2447-2455 (2015)
- [44] C. Jaturapitakkul, R. Cheerarot, Development of bottom ash as pozzolanic material. Journal of Materials in Civil Engineering 15, 48-53 (2003).
- [45] K. Muthusamy, M.H. Rasid, G.A. Jokhio, A.M.A. Budiea, M.W. Hussin, J. Mirza, Coal bottom ash as sand replacement in concrete: A review. Construction and Building Materials 236, 117507 (2020).
- [46] S. Abbas, U. Arshad, W. Abbass, M.L. Nehdi, A. Ahmed, Recycling untreated coal bottom ash with added value for mitigating alkali-silica reaction in concrete: A sustainable approach. Sustainability 12, 10631 (2020).
- [47] W. Zhu, X. Chen, L.J. Struble, E.-H. Yang, Characterization of calcium-containing phases in alkali-activated municipal solid waste incineration bottom ash binder through chemical extraction and deconvoluted Fourier transform infrared spectra. Journal of Cleaner Production 192, 782-789 (2018).
- [48] Z. Khan, S. Yusup, M.M. Ahmad, N.A. Rashidi, Integrated catalytic adsorption (ICA) steam gasification system for enhanced hydrogen production using palm kernel shell. International Journal of Hydrogen Energy 39, 3286-3293 (2014).
- [49] I.M. Danchuwa, M.Z. Abatcha, Y. Aliyu, M.B. Yawale, W.H. Abubakar, A.U. Abubakar, Characterization of Some Portland Limestone Cements in Nigeria Using Fourier-Transform Infrared Spectroscopy (FTIR). Journal of Structural Monitoring and Built Environment 2, 49-58 (2022).
- [50] S.L. Shrestha, Characterization of Some Cement Samples of Nepal Using FTIR Spectroscopy. International Journal of Advanced Research in Chemical Science (IJARCS) 5, 19-23 (2018).
- [51] S. Subedi, G.A. Arce, M.M. Hassan, O. Huang, M. Radovic, Z. Hossain, Evaluation of Alternative Sources of Supplementary Cementitious Materials for Concrete Materials. Transportation Research Record 2676, 287-301 (2022).
- [52] E. ul Haq, S.K. Padmanabhan, A. Licciulli, Synthesis and characteristics of fly ash and bottom ash based geopolymers - A comparative study. Ceramics International 40, 2965-2971 (2014).
- [53] S.S.G. Hashemi, H. Bin Mahmud, J.N.Y. Djobo, C.G. Tan, B.C. Ang, N. Ranjbar, Microstructural characterization and mechanical properties of bottom ash mortar. Journal of Cleaner Production 170, 797-804 (2018). DOI: https://doi.org/10.1016/j.jclepro.2017.09.191.
- [54] C. Phutthananon, N. Tippracha, P. Jongpradist, J. Tunsakul, W. Tangchirapat, P. Jamsawang, Investigation of Strength and Microstructural Characteristics of Blended Cement-Admixed Clay with Bottom Ash. Sustainability 15, 3795 (2023).
Uwagi
This study received support from the Ministry of Higher Education (MOHE) or Kementerian Pendidikan Tinggi Malaysia and Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), through the following financial grant: Fundamental Research Grant Scheme FRGS/1/2022/TK01/UMP/02/5 (RDU220112) and Kementerian Pendidikan Malaysia and Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA) for supporting through the following financial grant RDU 223313.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad43097a-36db-46e0-a901-e81fbac94835
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.