Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the experimental investigations, constitutive description and numerical modelling of low-cycle fatigue behaviour of P91 steel in non-isothermal conditions are presented. First, experimental tests are performed to recognise different aspects of material behaviour. Then, an appropriate constitutive model is developed within the framework of thermodynamics of irreversible processes with internal state variables. The model describes two phases of cyclic softening, related to plastic mechanisms. An important goal of the presented research is to include thermomechanical coupling in the constitutive modelling. Next, the model parameters are identified based on the available experimental data. Some parametric studies are presented. Finally, numerical simulations are performed, which indicate the significant influence of thermomechanical coupling on the response of the constitutive model in thermomechanical fatigue conditions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
69--78
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Applied Mechanics, Faculty of Mechanical Engineering, Cracow University of Technology, 31-864 Kraków Al. Jana Pawła II 37, Poland
autor
- Huta Stalowa Wola S.A., ul. gen. Tadeusza Kasprzyckiego 8, 37-450 Stalowa Wola, Poland
autor
- UTP University of Science and Technology, Faculty of Mechanical Engineering, 85-225 Bydgoszcz ul. Kordeckiego 20, Poland
autor
- Institute of Applied Mechanics, Faculty of Mechanical Engineering, Cracow University of Technology
Bibliografia
- 1. Besson J., Cailletaud G., Chaboche S. (2009), Non-linear mechanics of materials, Springer.
- 2. Cailletaud G., Depoid C., Massinon D., Nicouleau-Bourles E. (2000), Elastoviscoplasticity with ageing in aluminium alloys, [In:] Continuum Thermomechanics: The Art and Science of Modelling Material Behaviour (Paul Germain's Anniversary Volume), Solid Mechanics and Its Applications, Kluwer Academic Publishers, 75–86.
- 3. Cailletaud G., Saï K. (1995), Study of plastic/viscoplastic models with various inelastic mechanisms, International Journal of Plasticity, 11, 991–1005.
- 4. Chaboche J.L. (2008), A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 24(10), 1642-1693.
- 5. Dassault. (2016), SIMULIA Abaqus Extended Products, Abaqus 6.14 - AP Isight 5.9. http://www.3ds.com/products/simulia
- 6. Duda P. (2015), Solution of an inverse axisymmetric heat conduction problem in complicated geometry. International Journal of Heat and Mass Transfer, 419–428.
- 7. Egner H. (2012), On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials, International Journal of Solids and Structures, 49(2), 279–288.
- 8. Egner H., Egner W. (2014), Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermo-viscoplastic coupling, International Journal of Plasticity, 57, 77–91.
- 9. Egner H., Ryś M. (2017), Total energy equivalence in constitutive modeling of multidissipative materials, International Journal of Damage Mechanics, 26(3),, 417–446.
- 10. Egner W., Egner H. (2016), Thermo-mechanical coupling in constitutive modeling of dissipative materials, International Journal of Solids and Structures, 91, 78–88.
- 11. Farragher T.F. (2014), Thermomechanical Analysis of P91 Power Plant Components, PhD Thesis, National University of Ireland Galway, https://aran.library.nuigalway.ie/xmlui/handle/10379/4161.
- 12. Fournier B., Salvi M., Dalle F., De Carlan Y., Caës C., Sauzay M., Pineau A. (2010), Lifetime prediction of 9-12%Cr martensitic steels subjected to creep-fatigue at high temperature, International Journal of Fatigue, 32(6), 971–978.
- 13. Fournier B., Sauzay M., Caës C., Noblecourt M., Mottot M., Bougault A., Rabeau V., Man J., Gillia O., Lemoine P., Pineau A. (2008), Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part III: Lifetime prediction, International Journal of Fatigue, 30(10–11), 1797–1812.
- 14. Frederick C.O., Armstrong P.J. (2007), A mathematical representation of the multiaxial Bauschinger effect, Materials at High Temperatures, 24(1), 1–26.
- 15. Jones W.B., Van Den Avyle J.A. (1980), Substructure and strengthening mechanisms in 2.25 Cr-1 Mo steel at elevated temperatures, Metallurgical Transactions, A 11A, 1275–1286.
- 16. Kannan R., Sankar V., Sandhya R., Mathew M.D. (2013), Comparative evaluation of the low cycle fatigue behaviours of P91 and P92 steels, Procedia Engineering, 55, 149–153.
- 17. Kim S., Weertman J.R. (1988), Investigation of microstructural changes in a ferritic steel caused by high temperature fatigue, Metallurgical Transactions, A 19A, 999–1007.
- 18. Kruml T., Polák J. (2001), Fatigue softening of X10CrAl24 ferritic steel, Materials Science and Engineering, A 319, 564–568.
- 19. Kyaw S.T., Rouse J.P., Lu J., Sun W. (2016), Determination of material parameters for a unified viscoplasticity-damage model for a P91 power plant steel, International Journal of Mechanical Sciences, 115–116, 168–179.
- 20. Li M., Barrett R.A., Scully S., Harrison N.M., Leen S.B., O’Donoghue P.E. (2016), Cyclic plasticity of welded P91 material for simple and complex power plant connections, International Journal of Fatigue, 87, 391–404.
- 21. Lu J., Sun W., Becker A., Saad A.A. (2015), Simulation of the fatigue behaviour of a power plant steel with a damage variable,. International Journal of Mechanical Sciences, 100, 145–157.
- 22. Mroziński S. (2011), The influence of loading program on the course of fatigue damage cumulation, Journal of Theoretical and Applied Mechanics, 49(1), 83–95.
- 23. Mroziński S., Golański G. (2014), Influence of temperature change on fatigue properties of P91 steel, Materials Research Innovations, 18 (2), 504–508.
- 24. Nagesha A., Valsan M., Kannan R., Bhanu Sankara Rao K., Mannan S.L. (2002), Influence of temperature on the low cycle fatigue behaviour of a modified 9Cr-1Mo ferritic steel, International Journal of Fatigue, 1285–1293.
- 25. Korelc J. (2016), AceGen 6.824 Windows.
- 26. Saad A.A., Hyde T.H., Sun W., Hyde C.J., Tanner D.W.J. (2013), Characterization of viscoplasticity behaviour of P91 and P92 power plant steels, International Journal of Pressure Vessels and Piping, 111–112, 246–252.
- 27. Saad A.A., Sun W., Hyde T.H., Tanner D.W.J. (2011), Cyclic softening behaviour of a P91 steel under low cycle fatigue at high temperature, Procedia Engineering, 1103–1108.
- 28. Saanouni K., Devalan P. (2012), Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation, Wiley.
- 29. Sauzay M., Brillet H., Monnet I., Mottot M., Barcelo F., Fournier B., Pineau A. (2005), Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel, Materials Science and Engineering A, 400–401(1-2), 241–244.
- 30. Shankar V., Valsan M., Rao K.B.S., Kannan R., Mannan S.L., Pathak S.D. (2006), Low cycle fatigue behavior and microstructural evolution of modified 9Cr-1Mo ferritic steel, Materials Science and Engineering A, 437, 413–422.
- 31. Skrzypek J.J., Kuna-Ciskał H. (2003), Anisotropic Elastic-Brittle-Damage and Fracture Models Based on Irreversible Thermodynamics, Lecture Notes in Applied and Computational Mechanics, 9, 143–184.
- 32. Sulich P., Egner W., Mroziński S., Egner H. (2017), Modeling of cyclic thermo-elastic-plastic behaviour of P91 steel, Journal of Theoretical and Applied Mechanics, 55(2), 595–606.
- 33. Taleb L., Cailletaud G. (2010), An updated version of the multimechanism model for cyclic plasticity, International Journal of Plasticity, 26(6), 859–874.
- 34. Wolfram Mathematica 11.2. (2017), http://www.wolfram.com/mathematica/new-in-11/
- 35. Xie X., Jiang W., Chen J., Zhang X., Tu S.-T. (2019), Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence: Experimental and damage-coupled constitutive modeling, International Journal of Plasticity, 114, 196-214.
- 36. Zhang Z., Delagnes D., Bernhart G. (2002), Anisothermal cyclic plasticity modelling of martensitic steels, International Journal of Fatigue, 24(6), 635–648.
- 37. Zhao P., Xuan F. Z., Wu D.L. (2017), Cyclic softening behaviors of modified 9–12%Cr steel under different loading modes: Role of loading levels, International Journal of Mechanical Sciences, 131–132, 278–285.
- 38. Zhou J., Sun Z., Kanouté P., Retraint, D. (2018), Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime, International Journal of Plasticity, 107, 54–78.
Uwagi
1. This work was supported by the National Science Centre of Poland through the Grant No. 2017/25/B/ST8/02256.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad40430f-a6bd-4a7f-97be-364b0d2d6362