PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of Nano SiO2 and Silica Fume on the properties of concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the effects of Nano SiO2 (NS) and Silica fume (SF) on the mechanical properties and durability of Portland cement concrete. On specimens with varying NS and SF concentrations, compressive strength, flexural strength, abrasion resistance, elastic modulus, and chloride ion penetration were all tested. All specimens were subjected to the proposed method/technique cured at the ages of 3, 7, 28, and 60 days. NS particles were added to cement concrete at various replacements of 0, 0.5, 1.0, 1.5, and 2.0% by the mass of the binder. The water/binder ratio has remained at 0.37 for all mixes. Then, for cement-concrete were prepared 45 MPa (C45) with NS and SF. The specimens confirm the new method effectiveness evaluation were prepared under two different categories: (1) Portland cement replacement with NS of 0%, 0.5%, 1.0%, 1.5%, and 2.0%, by weight for adhesives; (2) Portland cement replacement with NS of 0.5%, 1.0% and each NS content in combination with SF of 5%, 10%, and 15%, respectively, by weight for adhesives. The results indicated that the abrasion resistance and Chloride ion penetration of concrete containing NS and SF are improved. Finally, an analytical model for forecasting the Elastic modulus, flexural strength, and compressive strength of cement concrete was established from obtained data.
Rocznik
Strony
391--407
Opis fizyczny
Bibliogr. 33 poz., il., tab.
Twórcy
  • Faculty of Architecture, Thu Dau Mot University, Binh Duong Province, Vietnam
  • Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Bibliografia
  • [1] J.-F. Chen, H.-M. Ding, J.-X. Wang, L. Shao, “Preparation and characterization of porous hollow silica nanoparticles for drug delivery application,” Biomaterials, 2004, vol. 25, no. 4, pp. 723-727, DOI: 10.1016/S0142-9612(03)00566-0.
  • [2] L. Wu, Z. Lu, C. Zhuang, Y. Chen, R. Hu, “Mechanical Properties of Nano SiO2 and Carbon Fiber Reinforced Concrete after Exposure to High Temperatures,” Materials, 2019, vol. 12, no. 22, DOI: 10.3390/ma12223773.
  • [3] M.A. Tambichik, N. Mohamad, A.A.A. Samad, M.Z.M. Bosro, M.A. Iman, “Utilization of construction and agricultural waste in Malaysia for development of Green Concrete: A Review,” IOP Conference Series: Earth and Environmental Science, 2018, vol. 140, art. ID 012134, DOI: 10.1088/1755-1315/140/1/012134.
  • [4] V.H. Le, C.N.H. Thuc, H.H. Thuc, “Synthesis of silica nanoparticles from Vietnamese rice husk by sol-gel method,” Nanoscale Research Letters, 2013, vol. 8, art. ID 58, DOI: 10.1186/1556-276X-8-58.
  • [5] C. Fu, C., Xie, J. Liu, X. Wei, D. Wu, “A Comparative Study on the Effects of Three Nano-Materials on the Properties of Cement-Based Composites,” Materials, 2020, vol. 13, no. 4, DOI: 10.3390/ma13040857.
  • [6] L. Wang, M. Jin, Y. Wu, Y. Zhou, S. Tang, “Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials,” Construction and Building Materials, 2021, vol. 272, art. ID 121952, DOI: 10.1016/j.conbuildmat.2020.121952.
  • [7] Y. Qin, M. Li, Y. Li, W. Ma, Z. Xu, J. Chai, H. Zhou, “Effects of nylon fiber and nylon fiber fabric on the permeability of cracked concrete,” Construction and Building Materials, 2021, vol. 274, art. ID 121786, DOI: 10.1016/j.conbuildmat.2020.121786.
  • [8] H. Du, S. Du, X. Liu, “Durability performances of concrete with nano-silica", Construction and Building Materials, 2014, vol. 73, pp. 705-712, DOI: 10.1016/j.conbuildmat.2014.10.014.
  • [9] S. Rai, S. Tiwari, “Nano Silica in Cement Hydration,” Materials Today: Proceedings, 2018, vol. 5, p. 9196-9202, DOI: 10.1016/j.matpr.2017.10.044.
  • [10] A. Nazari, S. Riahi, “Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles,” Materials Science and Engineering: A, 2010, vol. 527, pp. 7663-7672, DOI: 10.1016/j.msea.2010.08.095.
  • [11] W. Xu, T.Y. Lo, W. Wang, D. Ouyang, P. Wang, F. Xing, “Pozzolanic Reactivity of Silica Fume and Ground Rice Husk Ash as Reactive Silica in a Cementitious System: A Comparative Study”, Materials, 2016, vol. 9, no. 3, DOI: 10.3390/ma9030146.
  • [12] Y. Ling, P. Zhang, J. Wang, P. Taylor, S. Hu, “Effects of nanoparticles on engineering performance of cementitious composites reinforced with PVA fibers,” Nanotechnology Reviews, 2020, vol. 9, pp. 504-514, DOI: 10.1515/ntrev-2020-0038.
  • [13] P. Zhang, D. Sha, Q. Li, S. Zhao,Y. Ling, “Effect of Nano Silica Particles on Impact Resistance and Durability of Concrete Containing Coal Fly Ash,” Nanomaterials, 2021, vol. 11, no. 5, DOI: 10.3390/nano11051296.
  • [14] K. Sobolev, M.F. Gutiérrez, “How Nanotechnology Can Change the Concrete World (part one of two part series),” American Ceramic Society Bulletin, 2007, vol. 84, no. 11, pp. 1-5. https://cpb-us-w2.wpmucdn.com/sites.uwm.edu/dist/f/324/files/2016/10/SobolevP2-p3teoe.pdf.
  • [15] ASTM C150/C150M In Standard Specification for Portland Cement. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, USA, pp. 19428-2959, 2016.
  • [16] ASTM C1240-04 Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM, West Conshohocken, PA, USA, 2014.
  • [17] ASTM C33/C33M-13 International. Standard Specification for Concrete Aggregates. In Annual Book of ASTM Standards American Society for Testing and Materials. ASTM, West Conshohocken, PA, USA, 2013.
  • [18] ASTM C29 Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. ASTM West Conshohocken, PA, USA, 2017.
  • [19] P.A.K. Nari, W.L. Vasconcelos, K. Paine, J. Calabria-Holley, “A review on applications of sol-gel science in cement,” Construction and Building Materials, 2021, vol. 291, art. ID 123065, DOI: 10.1016/j.conbuildmat.2021.123065.
  • [20] TCVN 4506 Water for and mortar - Technical spcification. Ministry of Science and Technolory, Vietnam, 2012.
  • [21] TCVN 8826 Chemical admixtures for Concrete. ASTM, West Conshohocken, PA, USA, 2011.
  • [22] ACI 211.4R-08 Guide for Selecting Proportions for High-Strength Concrete Using Portland Cement and Other Cementitious Mater. ASTM, West Conshohocken, PA, USA, 2008.
  • [23] ASTM C39/C39M Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA, USA, 2014.
  • [24] ASTM C78 Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM, West Conshohocken, PA, USA, 1994.
  • [25] ASTM C469 Standard Test Method for Static Modulus of Elasticity and Poisson is Ratio of Concrete in Compression. ASTM, West Conshohocken, PA, USA, 2014.
  • [26] ASTM C1202 Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM, West Conshohocken, PA, USA, 2019.
  • [27] TCVN 3114 Heavyweight concrete - Method for determination of abrasion. Ministry of Science and Technology, 1993.
  • [28] P. Zhang, Y. Ling, J. Wang, Y. Shi, “Bending resistance of PVA fiber reinforced cementitious composites containing nano-SiO2,” Nanotechnology Reviews, 2019, vol. 8, no. 1, pp. 690-698, DOI: 10.1515/ntrev-2019-0060.
  • [29] S.M. Abbasi, H. Ahmadi, G. Khalaj, B. Ghasemi, “Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes,” Ceramics International, 2016, vol. 42, no. 14, pp. 15171-15176, DOI: 10.1016/j.ceramint.2016.06.080.
  • [30] T. Ji, “Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2,” Cement and Concrete Research, 2005, vol. 35, no. 10, pp. 1943-1947, DOI: 10.1016/j.cemconres.2005.07.004.
  • [31] Committee, A.C.I., “Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures,” ACI Symposium Publication, 1997.
  • [32] The Concrete Society: TECHNICAL REPORT, no. 34, 2nd ed., ISBN 0-946691-49-5. 1994.
  • [33] M. Balapour, A. Joshaghani, F. Althoey, “Nano-SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: A review,” Construction and Building Materials, 2018, vol. 181, pp. 27-41, DOI: 10.1016/j.conbuildmat.2018.05.266.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad3cc637-5d90-4d22-9d6b-498247c08cc5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.