PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study on RCFST column instability modes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the instability damage modes of yield state of a steel tube at the tension side of a rectangular steel tube-confined concrete (RCFST) column under eccentric compression were classified into two types based on the coupling effect of slenderness ratio (λ) and eccentricity ratio (γ). The two types include the unilateral compression yield failure mode with a smaller value of γ and tensile and compressive yield failure modes on both column sides with a larger value of γ. Further, the parametric analyses were performed by employing the finite element (FE) method and the analytical analysis to test 16 groups of RCFST columns by varying the γ value with different λ values. It was observed that the results of the analysis for the mechanical properties like the responses of load-strain (Ρ-ε) and RCFST column instability modes correlated well with the results obtained in the experiments. Furthermore, the proposed theoretical method could be used to investigate the roles of γ as a controller against the instability in RCFST columns when compared with λ.
Rocznik
Strony
211--225
Opis fizyczny
Bibliogr. 30 poz., il., tab.
Twórcy
autor
  • School of Civil Engineering, Shenyang Jianzhu University, Shenyang, China
autor
  • School of Civil Engineering, Shenyang Jianzhu University, Shenyang, China
Bibliografia
  • [1] L.H. Han, W. Li, R. Bjorhovde, “Developments and advanced applications of concrete-filled steel tube (CFST) structures: Members”, Journal of Constructional Steel Research, 2014, vol. 100, pp. 211-228, DOI: 10.1016/j.jcsr.2014.04.016.
  • [2] L.H. Han, Y.J. Li, F.Y. Liao, “Concrete-filled double skin steel tube (CFDST) columns subjected to longterm sustained loading”, Thin-Walled Structures, 2011, vol. 49, no. 12, pp. 1534-1543, DOI: 10.1016/j.tws.2011.08.001.
  • [3] A. Kuranovas, D. Goode, A.K. Kvedaras, S.T. Zhong, “Load-bearing capacity of concrete-filled steel columns”, Journal of Civil Engineering and Management, 2009, vol. 15, no. 1, pp. 21-33, DOI: 10.3846/1392-3730.2009.15.21-33.
  • [4] L.H. Han, C. Hou, Q.L.Wang, “Square concrete filled steel tube (CFST) members under loading and chloride corrosion: Experiments”, Journal of Constructional Steel Research, 2012, vol. 71, no. 1, pp. 11-25, DOI: 10.1016/j.jcsr.2011.11.012.
  • [5] Y.F. Yang, L.H. Han, X. Wu, “Concrete Shrinkage and Creep in Recycled Aggregate Concrete-Filled Steel Tubes”, Advances in Structural Engineering, 2008, vol. 11, no. 4, pp. 383-396, DOI: 10.1260/136943308785836772.
  • [6] Z. Tao, L.H. Han, “Behaviour of fire-exposed concrete-filled steel tube beam columns repaired with CFRP wraps”, Thin-Walled Structures, 2007, vol. 45, no. 1, pp. 63-76, DOI: 10.1016/j.tws.2006.11.004.
  • [7] H.Y. Dong, Y.N. Li, W.L. Cao, Q.Y. Qiao, R.J. Li, “Uniaxial compression performance of rectangular CFST columns with different internal construction characteristics”, Engineering Structures, 2018, vol. 176, pp. 763-775, DOI: 10.1016/j.engstruct.2018.09.051.
  • [8] U.M. Sulthana, S.A. Jayachandran, “Experimental studies on the global stability of concrete sandwiched double steel tubular columns”, Advanced Steel Construction, 2020, vol. 16, no. 2, pp. 99-111, DOI: 10.18057/IJASC.2020.16.2.2.
  • [9] C. Guo, Z.R. Lu, “Effect of circumferential gap on dynamic performance of CFST arch bridges”, Journal of Bridge Engineering, 2021, vol. 26, no. 2, art. ID 04020121, DOI: 10.1061/(ASCE)BE.1943-5592.0001661.
  • [10] Y.Q. Huang, J.Y. Fu, A.R. Liu, Y.L. Pi, D. Wu, W. Gao, “Effect of concrete creep on dynamic stability behavior of slender concrete filled steel tube column”, Composites Part B: Engineering, 2019, vol. 157, pp. 173-181, DOI: 10.1016/j.compositesb.2018.08.117.
  • [11] V.I. Patel, “Analysis of uniaxially loaded short round-ended concrete-filled steel tubular beam-columns”, Engineering Structures, 2020, vol. 205, art. ID 110098, DOI: 10.1016/j.engstruct.2019.110098.
  • [12] Eurocode 4: Design of Composite Steel and Concrete Structures-Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization, Brussels, 2004.
  • [13] ANSI/AISC 360-16 Specification for Structural Steel Buildings. American Institute of Steel Construction, Chicago-Illinois, 2016.
  • [14] GB 50936-2014 Technical Code for Concrete Filled Steel Tube Structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, China Architecture & Building Press, Beijing, 2014.
  • [15] Y.X. Hua, L.H. Han, Q.L. Wang, C. Hou, “Behaviour of square CFST beam-columns under combined sustained load and corrosion: Experiments”, Thin-Walled Structures, 2019, vol. 136, pp. 353-366, DOI: 10.1016/j.tws.2018.12.037.
  • [16] Y.Y. Wang, Y. Geng, J. Chen, M.Z. Zhao, “Testing and analysis on nonlinear creep behaviour of concrete-filled steel tubes with circular cross-section, Engineering Structures, 2019, vol. 185, pp. 26-46, DOI: 10.1016/j.engstruct.2019.01.065.
  • [17] C. Guo, Z.R. Lu, “Effect of temperature on CFST arch bridge ribs in harsh weather environments”, Mechanics of Advanced Materials and Structures, 2020, pp. 1-16, DOI: 10.1080/15376494.2020.1790701.
  • [18] F.Y. Liao, L.H. Han, S.H. He, “Behavior of CFST short column and beam with initial concrete imperfection: Experiments”, Journal of Constructional Steel Research, 2011, vol. 67, no. 12, pp. 1922-1935, DOI: 10.1016/j.jcsr.2011.06.009.
  • [19] Z.R. Lu, C. Guo, G.C. Li, “Air void and ring gap effect on CFST arch bridges dynamic performance”, Journal of Constructional Steel Research, 2021, vol. 177, art. ID 106418, pp. 1-14, DOI: 10.1016/j.jcsr.2020.106418.
  • [20] A.Y. Al-Attraqchi, M.J. Hashemi, R. Al-Mahaidi, “Hybrid simulation of bridges constructed with concrete-flled steel tube columns subjected to horizontal and vertical ground motions”, Bulletin of Earthquake Engineering, 2020, vol. 18, pp. 4453-4480, DOI: 10.1007/s10518-020-00871-7.
  • [21] G.C. Li, B.W. Chen, Z.J. Yang, Y.P. Liu, Y.H. Feng, “Experimental and numerical behavior of eccentrically loaded square concrete-filled steel tube long columns made of high-strength steel and concrete”, Thin-Walled Structures, 2021, vol. 159, art. ID 107289, DOI: 10.1016/j.tws.2020.107289.
  • [22] G.C. Li, B.W. Chen, Z.J. Yang, Y.H. Feng, “Experimental and numerical behaviour of eccentrically loaded high strength concrete filled high strength square steel tube stub columns”, Thin-Walled Structures, 2018, vol. 127, pp. 483-499, DOI: 10.1016/j.tws.2018.02.024.
  • [23] S.M. Zhang, L.H. Guo, Z.L. Ye, Y.Y. Wang, “Behavior of steel tube and confined high strength concrete for concrete-filled RHS tubes”, Advances in Structural Engineering, 2005, vol. 8, no. 2, pp. 101-116, DOI: 10.1260/1369433054037976.
  • [24] L.H. Han, G.H. Yao, “Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)”, Thin-Walled Structures, 2004, vol. 42, no. 9, pp. 1357-1377, DOI: 10.1016/j.tws.2004.03.016.
  • [25] ACI 363R-92 State-of-the-art Report on High-strength Concrete. Detroit, 1997.
  • [26] L.H. Han, G.H. Yao, Z. Tao, “Performance of concrete-filled thin-walled steel tubes under pure torsion”, Thin-Walled Structures, 2007, vol. 45, no. 1, pp. 24-36, DOI: 10.1016/j.tws.2007.01.008.
  • [27] L.H. Han, G.H. Yao, X.L. Zhao, “Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns”, Steel and Composite Structures, 2004, vol. 4, no. 3, pp. 169-188, DOI: 10.12989/scs.2004.4.3.169.
  • [28] C.C. Weng, C.P. Lin, “Study on maximum strength of cold-formed steel columns”, Journal of Structural Engineering, 1992, vol. 118, no. 1, pp. 128-146, DOI: 10.1061/(ASCE)0733-9445(1992)118:1(128).
  • [29] J.M. Portolés, M.L. Romero, F.C. Filippou, J.L. Bonet, “Simulation and design recommendations of eccentrically loaded slender concrete-filled tube columns”, Engineering Structures, 2011, vol. 33, no. 5, pp. 1576-1593, DOI: 10.1016/j.engstruct.2011.01.028.
  • [30] Y. Bouras, Z. Vrcelj, “Thermal in-plane stability of concrete-filled steel tube arches”, International Journal of Mechanical Sciences, 2019, vol. 163, art. ID 105130, DOI: 10.1016/j.ijmecsci.2019.105130.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad3a93e5-2b91-4067-9a2c-7e91ee8ddc17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.