PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ecological Implications of the Dynamics of Water Volume Growth in a Reservoir

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rate of growth of the water volume in the reservoir varies with each charging season. The accuracy of the predictions is required in sustainable reservoir management. Its intrinsic growth rate as an ecological parameter plays a role in determining this speed. This study aimed to analyze the dynamics of water volume growth based on its intrinsic growth rate to assess the potential for hydrometeorology disasters. The population growth models proposed to be tested for suitability and goodness is the Verhulst, Richards, Comperzt, and modified Malthus model. Test suitability and model goodness were subjected to stages of verification, parameter estimation and model validation based on daily water volume data in the Gembong Reservoir, Pati, Indonesia for the period 2007–2020. A good model is determined based on the Mean Average Percentage Error (MAPE) criteria. The Richards model with b = 2 and r = 0.063/day had consistently low MAPE values during training and testing. This model was chosen as a new approach to understand the dynamics of water volume growth in a reservoir. The ecological implication of these dynamics of water volume growth is that reservoirs experience an abundance of water during the charging season. Reservoir normalization can be prioritized as a mitigation strategy for potential flood disasters.
Twórcy
autor
  • Department of Mathematics, Faculty of Sciences and Mathematics, Doctorate Program of Environmental Science, School of Postgraduate Studies, Universitas Diponegoro, Semarang, 50241, Indonesia
autor
  • Department of Chemical Engineering, Faculty of Engineering, Doctorate Program of Environmental Science, School of Postgraduate Studies, Universitas Diponegoro, Semarang, 50241, Indonesia
autor
  • Department of Civil Engineering, Faculty of Engineering, Doctorate Program of Environmental Science, School of Postgraduate Studies, Universitas Diponegoro, Semarang, 50241, Indonesia
Bibliografia
  • 1. Ali A.M., Shafee M.E., Berglund E.Z. 2017. Agent-based modeling to simulate the dynamics of urban water supply: Climate, population growth, and water shortage. Sustainable Cities and Society 28:420- 434. https://dx.doi.org/10.1016/j.scs.2016.10.001
  • 2. Alifujiang Y., Abuduwaili J., Ma L., Samat A., Groll M. 2017. System Dynamics Modeling of Water Level Variations of Lake Issyk-Kul, Kyrgyzstan, Water 9, 989. . https://dx.doi.org/10.3390/w9120989
  • 3. Al-Saffar A., Kim E-J. 2017. Sustainable theory of a logistic model-Fisher information approach, Mathematical Biosciences 285:81-91. http://dx.doi. org/10.1016/j.mbs.2016.12.009
  • 4. Anand V., Oinam B. 2019. Future climate change impact on hydrological regime of river basin using SWAT model, Global J.Environ.Sci.Manage 5(4):471-484.
  • 5. Araujo J.C., Guntner A., Bronstert A. 2006. Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil, Hydrological Sciences Journal, 51(1): 157-170. https:// doi,org/10.1623/hysj.51.1.157
  • 6. Batista M. 2020. Estimation of the final size of coronavirus epidemic by the logistic model, ResearchGate. https://www.researchgate.net/publication/339240777
  • 7. Bonacci O., Roje-Bonacci T. 2008. Water losses from the Recice revervoir built in the Dinaric karst. Engineering Geology 99:121-127. https://dx.doi.org/10.1016/j.enggeo.2007.11.014
  • 8. Bradley D.M. 2000. Verhulst’s Logistic Curve. The College Mathematics Journal. http://dx.doi.org/10.2307/2687113
  • 9. Brilhante M.F., Gomes M.I., Pestana D. 2019. Modeling Risk of Extreme Events in Generalized Verhulst Models, REVSTAT-Statistical Journal 17(2): 145-162.
  • 10. Burkhard B., Fath B.D., Jorgensen S.E., Larry B.L. 2015. Use of ecological indicator in models. Ecol.Model 295:1-4. https://www.sciencedirect.com/science/article/abs/pii/S0304380014004852?via%3Dihub
  • 11. Chen J., Shao C., Jiang S., Qu L., Zhao F., Dong G. 2019. Effects of changes in precipitation energy and water balance in a Eurasian meadow steppe. Ecol. Process 8(17). https://dx.doi.org/10.1186/s13717-019-0170
  • 12. Chen R.J.C., Blomfield P., Cubbage F.W. 2008. Comparing Forecasting Models in Touris, Journal of Hospitality and Tourism Research, 32(1): 3-21. http://dx.doi.org/10.1177/1096348007309566
  • 13. Chong O.A.G., Diniz G.L., Villatoro F.R. 2005. Dispersal of fish population in dams: modeling and simulation. Ecol.Modell 186:290-298. . https://dx.doi.org/10.1016/j.ecolmodel.2004.11.025
  • 14. Cortes E. 2016. Review:Perspectives on the intrinsic rate of population growth. Methods in Ecology and Evolution 7(10):1136–1145. . http://dx.doi.org/10.1111/2041-210X.12592
  • 15. Desta H., Lemma B. 2017. SWAT based hydrological assessment and characterization of Lake Ziway sub-watersheds, Ethiopia, Journal of Hydrology: Regional Studies 13:122-137. http://dx.doi.org/10.1016/j.ejrh2017.08.002
  • 16. FAO. 2020. Integrated agriculture water management and health, Rome. ISBN: 978-92-5-132444-8. https://doi.org/10.4060/ca8712en
  • 17. Forni L.G., Medellin-Azuara J.,Tansey M., Young C., Purkey D., Howitt R. 2016. Integrating complex economic and hydrologic planning models: An application for drought under climate change analysis, Water Resources and Economics 16: 15-27. http://dx.doi.org/10.1016/j.wre.2016.10.002
  • 18. Fowe T., Karambiri H., Paturel J.E., Possin J.C., Cecchi P. 2015. Water balance of small reservoirs in the Volta basin: A case study of Boura reservoir in Burkina Faso. Agricultural Water Management 152:99-109. http://dx.doi.org/10.1016/j.agwat.2015.01.006
  • 19. Ghose D., Das U., Roy P. 2018. Modeling response of runoff and evapotranspiration for predicting water table depth in arid region using dynamic recurrent neural network, Groundwater for Sustainable Development 6:263-269. https://doi.org/10.1016/j.gsd.2018.01.007
  • 20. Hallouz F., Meddi M., Mahe G., Alirahmani S., Keddar A. 2018. Modelling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria), Water Science 32:79-88. https://doi.org/10.1016/j.wsj.2017.12.004
  • 21. Han M., Zhao C., Feng G., Disse M., Shi F., Li J. 2015. An eco-hydrological approach to predicting regional vegetation and groundwater response to cological water conveyance in dryland riparian ecosystems, Quaternary International 380-381:224-236. . http://dx.doi.org/10.1016/j.quaint.2015.02.032
  • 22. Harsoyo B. 2010. Jebolnya Tanggul Situ Gintung (27 Maret 2009) Bukan Karena Faktor Hujan Ekstrem. Jurnal Sains dan Teknologi Modifikasi Cuaca, 11(1): 9-17. http://ejurnal.bppt.go.id/index.php/JSTMC/article/view/2176/1814
  • 23. Hyndman R.J., Koehler A.B. 2006. Another look at measures of forecast accuracy, Int.J. Forecast 22:679-688. http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
  • 24. Idlango M.A., Shepherd J.J., Gear J.A. 2017. Logistic growth with a slowy varying Holling type II harvesting term. Commun Nonlinear Sci Numer Simulat 49:81-92. http://dx.doi.org/10.1016/j.cnsns.2017.02.005
  • 25. Jin W., McCue S.W., Simpson M.J. 2018. Extended logistic growth model for heterogenous populations. Journal of Theoretical Biology 445:51-6. https://doi.org/10.1016/j.jtbi.2018.02.027
  • 26. Jorgensen S.E. 1994. Fundamental of Ecological Modelling (2nd Ed), Elsevier, Netherlands.
  • 27. Jorgensen S.E. 2016. Ecohydrology as an important concept and tool in enviomental management. J.Ecohyd 16:4-6. http://dx.doi.org/10.1016/j.ecohyd.2015.04.005
  • 28. Kartono K., Purwanto P., Suripin S. 2020. Analysis of Local Rainfall Characteristics as a Mitigation Strategy for Hydrometeorology Disaster in Rain-fed Reservoirs Area. Adv. Sci. Technol. Eng. Syst. J. 5(3):299-305. . https://dx.doi.org/10.25046/aj050339
  • 29. Kribs-Zaleta C.M. 2004. To switch or taper off: the dynamics of saturation, Mathematical Biosciences 192: 137-152. https://dx.doi.org/10.1016/j.mbs.2004.11.001.
  • 30. Melica V., Invernizzi S., Carist G. 2014. Logistic density-dependent growth of an Aurelia Aurita polyps population, Ecol.Modell 291:1-5. http://dx.doi.org/10.1016/j.ecolmodel.2014.07.009
  • 31. Mereu S., Susnik J., Trabucco A., Daccache A., Vamvakeridou-Lyroudia L., Renoldi S., Virdis A., Savic D., Assimacopoulos D. 2016. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia, J.Sci.Tot.Env 543: 1028-1038. https://dx.doi.org/10.1016/j.scitotenv.2015.04.066
  • 32. Miranda L.C.M., Lima C.A.S. 2010. A new methodology for the logistic analysis of evolutionary S-shaped processes: Application to historical time serie and forecasting, J.Tech. Fore & Soc. Ch 77: 175-192. https://dx.doi.org/10.1016/j.techfore.2009.07.007
  • 33. Miskinis P., Vasiliauskiene V. 2017. The analytical solutions of the harvesting Verhulst’s evolution equation, Ecol.Modell 360:189-193.http://dx.doi.org/10.1016/j.ecolmodel.2017.06.021
  • 34. Mugagga F., Nabaasa B.B. 2016. The centrality of water resources to the realization of Sustanable Development Gols (SDG). A review of potential and constraints on the African continent. International Soil and Water Concervation Research 4: 215-223. http://dx.doi.org/10.1016/j.iswcr.2016.05.004
  • 35. Mushar S.H.M., Ahmad S.S.S., Kasmin F., Kasmuri E. 2019. Flood Damage Assessment: A Preliminary Study, J. Env.Rese. Eng. Manage 75 (3): 55-70 http://dx.doi.org/10.5755/j01.erem.75.3.22433
  • 36. Pandey P.K., Soupir M.L., Singh V.P., Panda S.N., Pandey V. 2011. Modeling Rainwater Storage in Distributed Reservoir Systems in Humid Subtropical and Tropical Savannah Regions, Water Resour. Manage25:3091-3111. http://dx.doi.org/10.1007/s11269-011-9847-5
  • 37. PJRRC. 2015. Final Report of the infrastructure investigation in the Gembong Reservoir on 2015.
  • 38. Peleg M., Corradini M.G., Normand M.D. 2007. The logistic (Verhulst) model for sigmoid microbial growth curves revisited, J.Food.Res.Int 40:808-818. http://dx.doi.org/10.1016/j.foodres.2007.01.012
  • 39. Pinol C.M.N., Banzon R.S. 2011. Stability in a population model without random deaths by the Verhulst factor, Physica A 390:1295-1299. http://dx.doi.org/10.1016/j.physa.2010.11.046
  • 40. Purwanto, 2005. Permodelan Rekayasa Proses dan Lingkungan, Badan Penerbit Universitas Diponegoro, Semarang.
  • 41. Rogovchenko S.P., Rogochenko Y.V. 2009. Effect of Periodic environmental fluctuations on the Pearl-Verhulst model, Chaos, Solitans & Fractals 39:1169-118. Ecol.Modell 220:3472- 3474, 2009. http://dx.doi.org/10.1016/j.ecolmodel.2009.08.024
  • 42. Ross J.V. 2009. A note on density dependence in population models, Ecol.Modell 220:3472-3474. http://dx.doi.org/10.1016/j.ecolmodel.2009.08.024
  • 43. Shi P., Sandhu H.S., Ge F. 2013. Could the intrinsic rate of increase represent the fitness in tererestrial ectotherms?, Journal of Thermal Biology 38 :148-151. http://dx.doi.org/10.1016/j.jtherbio.2013.01.002
  • 44. Szporak-Wasilewska S., Piniewski M., Kubrak J., Okruszko T. 2015. What we can learn from a wetland water balance?. Narew National Park case study, Ecohydrology & Hydrobiology 15:136-149. https://dx.doi.org/10.1016/j.ecohyd.2015.02.003
  • 45. Thornley J.H.M., France J. 2004. An open-ended logistic-based growth function, Ecol.Modell., 184: 257-261. http://dx.doi.org/10.1016/j.ecolmodel.2004.10.007
  • 46. Torrealba-Rodriguez O., Conde-Gutierrez R.A., Hernandez-Javier A.L. 2020. Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models, Chaos, Soliton and Fractals 138:109946. https://doi.org/10.1016/j.chaos2020.109946
  • 47. Tsoularis A., Wallace J. 2002. Analysis of Logistic Growth Models, Math. Biosci., 179(1):21-55.https://www.researchgate.net/publication/11325416_ Analysis_of_Logistic_Growth_Models/link/59f22a27aca272cdc7d01333/download
  • 48. WHO. 2020. Water, sanitation, hygiene, and waste management for the COVID-19 virus: interim guidance. WHO/2019-nCoV/IPC_WASH/2020.2.
  • 49. Xi X., Poh K.L. 2013. Using system dynamics for sustainable water resources management in Singapore, Procedia Comp Sci 16:157-166. . http://dx.doi.org/10.1016/j.procs.2013.01.017
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad3a6758-fe0d-41ec-bd95-7dfbe38721fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.