Identyfikatory
Warianty tytułu
Gesture recognition based on 9DOF inertial sensor
Języki publikacji
Abstrakty
Rozpoznawanie gestów za pomocą czujników inercyjnych może być alternatywą dla standardowych interfejsów człowiek-komputer. Do śledzenia gestów wykorzystano czujnik zawierający trójosiowy akcelerometr, magnetometr i żyroskop. W dotychczasowych badaniach bazowano na sygnałach przyspieszenia. Autorzy zaproponowali i porównali rozwiązania wykorzystujące zarówno analizę przyspieszenia, jak i orientacji w przestrzeni, a także umożliwili badanym osobom wykonywanie gestów w sposób naturalny. Wyniki pokazują, że za pomocą algorytmu DTW (Dynamic Time Warping) możliwa jest klasyfikacja indywidualna dla danej osoby (ze skutecznością 92%), a także klasyfikacja uogólniona - na podstawie uniwersalnego wzorca (ze skutecznością 83%).
Gesture recognition may be applied to control of computer applica-tions and electronic devices as an alternative to standard human-machine interfaces. This paper reports a method of gesture classification based on analysis of data from 9DOF inertial sensor - NEC-TOKIN, Motion Sensor MDP-A3U9S (Fig.1). Nine volunteers were asked to perform 10 different gestures (shown in Fig.2) in a natural way with a sensor attached to their hand. The gesture data base consisting of 2160 files with triaxial acceleration and orientation signals was created. In the first step the data were divided into training and testing sets. The designed system uses the Dynamic Time Warping (DTW) algorithm to calculate similarity of signals (formulas (1)-(3)). Using this method the authors chose representative signals to indi-vidual and generalized exemplars data base from the training set. The DTW algorithm was also used in the classification process. Different recognition approaches were tested basing on acceleration-only, orientation-only and acceleration-orientation signals. The results listed in Tab.4 show that the best recognition efficiency of 92% was obtained in the individual recognition (only one person gestures taken into account) for modified exemplars data base. The modification proposed by the authors (Section 3) improved the recognition rate by 10 percentage points. The efficiency rate of 83% (Tab. 5) was reached in the generalized case. The next step of im-proving the designed recognition system is application of an inertial system with a bluetooth module and real-time gesture classification.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
235--238
Opis fizyczny
Bibliogr. 17 poz., rys., schem., tab., wzory
Twórcy
autor
- AGH Akademia Górniczo-Hutnicza, WEAIiIB, Katedra Automatyki i Inżynierii Biomedycznej, Al. Mickiewicza 30 Kraków
autor
- AGH Akademia Górniczo-Hutnicza, WEAIiIB, Katedra Metrologii i Elektroniki, Al. Mickiewicza 30, Kraków
autor
- SILVERMEDIA Sp. z o. o., ul. Wadowicka 6, Kraków
Bibliografia
- [1] www.ethnologue.com, data odwiedzenia strony: luty 2013 r.
- [2] www.makaton.pl, data odwiedzenia strony: styczeń 2013 r.
- [3] Liang R. H., Ouhyoung M.: A Real-time Continuous Gesture Recognition System for Sign Language, In: Third IEEE International Conference on Automatic Face and Gesture Recognition, Proceedings, Nara, Japan, 1998.
- [4] Xu R., Zhou S., Li W. J.: MEMS Accelerometer Based Nonspecific-User Hand Gesture Recognition, Sensors Journal, IEEE, vol. 12, No. 5, May 2012.
- [5] Hussain S. M. A., Harun-ur Rashid A. B. M.: User Independent Hand Gesture Recognition by Accelerated DTW, IEEE/OSA/IAPR International Conference on Informatics, Electronics & Vision, Proceedings, Dhaka, Bangladesh 2012.
- [6] Akl A., Feng C., Valaee S.: A Novel Accelerometer-Based Gesture Recognition System, Transactions on Signal Processing, IEEE, vol. 59, No. 12, December 2011.
- [7] Li H., Greenspan M.: Model-based segmentation and recognition of dynamic gestures in continuous video streams, Pattern Recognition 44, Elsevier, 2011.
- [8] Suk H., Sin B. K., Lee S. W.: Hand gesture recognition based on dynamic Bayesian network framework, Pattern Recognition 43, Elsevier, 2010.
- [9] Rautaray S., Agrawal A.: Design of Gesture Recognition System for dynamic User Interface, IEEE International Conference on Technology Enhanced Education (ICTEE), Proceedings, Amritapuri, India, 2012.
- [10] Paulraj M. P., Yaacob S., Azalan M. S. Z., Palaniappan R.: A Phoneme Based Sign Language Recognition System using 2D Moment Invariant Interleaving feature and Neural Network, IEEE Student Conference on Research and Development, Proceedings, Cyberjaya, Malaysia, 2011.
- [11] Lichtenauer J. F., Hendriks E. A., Reinders M. J.T.: Sign Language Recognition by Combining Statistical DTW and Independent Classification, Transactions on Pattern Analysis and Machine Inteligence, Vol. 30, No. 11, IEEE, 2008.
- [12] www.xbox.com/en-US/kinect, data odwiedzenia strony: styczeń 2013.
- [13] Wang Y., Yang C., Wu X., Xu S., Li H.: Kinect Based Dynamic Hand Gesture Recognition Algorithm System, 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Proceedings, Nanhang, China, 2012.
- [14] Li Y.: Hand Gesture Recognition Using Kinect. 3rd International Conference on Software Engineering and Service Science (ICSESS), Proceedings, IEEE, Beijing, China, 2012.
- [15] Szczepanowski B.: Podstawy języka migowego, WSiP, Warszawa 1994.
- [16] Liu J., Wang Z., Zhong L., Wickramasuriya J., Vasudevan V.: uWave: Accelerometer-based Personalized Gesture Recognition and Its Applications, Pervasive and Mobile Computing Journal, Vol. 5, Issue 6, Elsevier, Amsterdam, The Netherlands, 2009.
- [17] Müller M.: Information Retrieval for Music and Motion. Chapter 4: Dynamic Time Warping. Springer Verlag 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad37e07d-2677-40a8-8a88-99fe9bedc20f