PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of unsteady flow forces on the thermowell of steam temperature sensor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, 3D numerical analysis of unsteady flow forces acting on the thermowell of steam temperature sensor is presented. According to that purpose, the CFD+CSD (computational fluid–solid dynamics) approach has been used. The nonstationary of fluid acting on the thermowell such as: Strouhal frequency, amplitude of pressure, structure of vortex, peak of pressure, field of pressure, field of velocity, etc. are studied analytically and numerically. There have been examined two cases of flow with changing both temperature, pressure and mass flow rate (operating daily and night in the unit with capacity of 380 MWe). In accordance with the standards ASME PTC 19.3 TW-2010 the possibility of entry into resonance has been examined.
Słowa kluczowe
Rocznik
Tom
Strony
25--49
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Conjoint Doctoral School at the Faculty of Mechanical Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
autor
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Badur J.: Numerical modeling of sustainable combustion in gas turbine. IMP PAN Publishers, Gdańsk 2003 (in Polish).
  • [2] Brauschke D., Wiklund D., Kitzman A., Zulic D.: Thermowell calculations. Emerson Process Management, White Paper 00840–0200–2654, Rev AC, March 2014.
  • [3] Goujon-Durand S., Jenffer P., Wesfreid J.E.: Downstream evolution of the Benard-von Kármán instability. Phys. Rev. E. 50(1994), 1.
  • [4] Klotz L., Goujon–Durand S., Rokicki J., Wesfreid J.E.: Experimental investigation of flow behind a cube for moderate Reynolds numbers. J. Fluid Mech. 750(2014), 73–98.
  • [5] Saha A.K.: Three-dimensional numerical study of flow and heat transfer from a cube placed in a uniform flow. Int. J. Heat Fluid Fl. 26(2006), 80–94.
  • [6] Skarysz M., Pryśko J., Goujon–Durand S., Wesfreid J.E.: The wake behind a rotating sphere. J. Phys. Conf. Ser. 530(2014), 012043.
  • [7] Sarpkaya T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluid Struct. 19(2004), 389–447.
  • [8] Zarruk G.A, Cowen E.A., Wu T.R., Liu P.L.-F.: Vortex shedding and evolution induced by a solitary wave propagating over a submerged cylindrical structure. J. Fluid Struct. 52(2015), 181–198.
  • [9] Baarholm G.S, Larsen C.M, Lie H. : On fatigue damage accumulation from in-line and cross-flow vortex-induced vibrations on risers. J. Fluid . Struc. 22(2006), 109–127.
  • [10] Sakai T., Iwata K., Morishita M., and Kitamura S.: Vortex-Induced Vibration of a Circular Cylinder in Super-Critical Reynolds number flow and its suppression by structure damping. JSME Int. J. Ser. B 44(2001), 712–720.
  • [11] Jiang Y.Y., Yoshimura S., Imai R., Katsura H., Yoshida T., Kato C.: Quantitative evaluation of flow-induced structural vibration and noise in turbomachinery by full-scale weakly coupled simulation. J. Fluids Struct. 23(2007), 531–544.
  • [12] Thapa B.S., Thapa B., Dahlhaug O.G.: Current research in hydraulic turbines for handling sediments. Energy 47(2012), 62–69.
  • [13] Lee A.H., Campbell R.L., Hambric S.A.: Coupled delayed-detachededdy simulation and structural vibration of a self-oscillating cylinder due to vortex-shedding. J. Fluids Struct. 48(2014), 216–234.
  • [14] Deng J., Shao X-M., Fu X., Zheng Y.: Evaluation of the viscous heating induced jam fault of valve spool by fluid-structure coupled simulations. Energ. Convers. Manage. 50(2009), 947–954.
  • [15] Chrust M., Goujon-Duran S., Wesfreid J.E.: Loss of a fixed plane of symmetry in the wake of a sphere. J. Fluids. Struct. 41(2013), 51–56.
  • [16] Gumowski K., Miedzik J., Goujon-Duran S., Jenffer P., Wesfreid J.E.: Transition to a time-dependent state of fluid flow in the wake of a sphere. Phys. Rev. E 77(2008), 055308(R).
  • [17] Norberg C.: Fluctuating lift on a circular cylinder: review and new measurements. J. Fluid Struct. 17 (2003), 57–96.
  • [18] Kulińczak A, Pankanin G.: Modeling Von Kármán vortex path using Ansys Fluent package . Przegląd elektrotechniczny 90(2014), 8 (in Polish).
  • [19] Badur J.: Development of energy concept. IMP PAN Publishers, Gdańsk 2009 (in Polish).
  • [20] Shyy W.: Computational Modeling for Fluid Flow and Interfacial Transport. Dover Pub., NY 1994.
  • [21] Prandtl L: Flow Dynamics. PWN, Warsaw 1956 (in Polish).
  • [22] Jou D., Casas-Vazquez J., Criado-Sancho M.: Thermodynamics of Fluid under Flow. Springer, Berlin 2001.
  • [23] Fuchs R., Hopff L., Seewald F.: Aerodynamik. Springer, Berlin 1934.
  • [24] Prosnak W.J.: Fluid Mechanics. PWN, Warsaw 1970 (in Polish).
  • [25] Szaltys P., Chrust M., Przadka A., Goujon-Duran S., Tuckerman L.S., Wesfreid J.E.: Nonlinear evolution of instabilities behind spheres and disks. J. Fluids Struct. 28(2012), 483–487.
  • [26] Badur J., Karcz M., Lemański M., Nastałek L.: Foundations of the Navier-Stokes boundary conditions in fluid mechanics. Transactions IFFM 123(2011), 3–55.
  • [27] Ziółkowski P., Badur J.: Navier number and transition to turbulence. J. Phys.: Conf. Ser. 530(2014), 012035.
  • [28] Pietraszkiewicz W., Konopińska V.: Singular curves in the resultant thermomechanics of shell. Int. J. Eng. Sci. 80(2014), 21–31.
  • [29] Badur J., Charun H.: Selected problems of heat exchange modelling in pipe channels with ball turbulisers. Arch. Thermodyn. 28(2007), 65–88.
  • [30] Laudner B.E., Spalding D.B.: The numerical computation of turbulent flows. Comput. Method. Appl. M. 3(1974), 2, 269–289.
  • [31] Badur J.: Five Lectures of Contemporary Fluid Thermomechanical Fluids. 2nd Edn., IMP PAN Publishers, Gdańsk 2005 (in Polish).
  • [32] Gawroński W.: Advanced Structural Dynamics and Active Control of Structures. Springer, 2004.
  • [33] Zienkiewicz O.C.: Finite Element Method. Vol. I,II, and III. Elsevier, 2005.
  • [34] Calderer R., Masud A.: A multiscale stabilized ALE formulation for incompressible flows with movieng boundaries. Comp. Mech 46(2010), 185–197.
  • [35] Czechowicz K., Badur J., Narkiewicz K.: Two-way FSI modelling of blood flow through CCA accounting on-line medical diagnostics in hypertension. J. Phys.: Conf. Ser. 530(2014), 012011.
  • [36] Kaliński K.J.: Chatter vibration surveillance by the optimal linear spindle speed control. Mech. Sys. Signal Proces. 25(2011), 383–399.
  • [37] Sławiński D.: A novel shake-down adaptation concept for the modern starts-ups of steam turbines. PhD thesis, The Szewalski Institute of Fluid–Flow Machinery PASci, Gdańsk 2015 (in Polish).
  • [38] Ziółkowski P.: The accuracy of the calculation of stress, deformation, vibration frequency and angle of twist single rotor blade depending on the discretization CSD. In: Modern Technologies and Energy Conversion, (J. Szantyr Ed.), Gdańsk 2011, 185-190 (in Polish).
  • [39] Badur J., Ziółkowski P., Zakrzewski W., Sławiński D., Kornet S., Kowalczyk T., Hernet J., Piotrowski R., Felicjancik J., Ziółkowski P.J.: An advanced Thermal-FSI approach to flow heating/cooling. J. Phys. Conf. Ser. 530(2014), 10.1088/1742–6596/530/1/012039.
  • [40] Dettmer W.G., Perić D.: On the coupling between fluid flow and mesh motion in the modeling of fluid-structure interaction. Comp. Mech. 43(2008), 81–90.
  • [41] Navier CLHM.: Mémoire sur les lois du mouvement des fluids – presented in Mémoires l’Acad. Royale des Sciences de l’Institut de France 2(1822), 375–393.
  • [42] Brenner H.: Navier–Stokes revised. Physica A 349(2005), 60–132.
  • [43] Boussinesq J.: Essai sur la théorie des eaux courantes. Mémoires l’Académie des Sciences, T. 23 et 24, 1877.
  • [44] Ziółkowski P., Badur J.: On the Boussinnesq eddy viscosity concept based on the Navier and du Buat number. Applied Mechanics 2014 Scientic Session, Book of Abstracts (J. Sawicki Ed.), 87–88.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad375971-95f8-4e14-bd61-fb2905498a51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.