PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient and sensitive quantification of polar tobacco volatile organic compounds by a micro thermal-assisted sampling device using reduced graphene oxide coupling with thermal desorption-gas chromatography/mass spektrometry

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It still remains a great challenge to selectively enrich and sensitively quantify the trace volatile organic compounds (VOCs) in real samples with complex matrix. In this study, an integration method combining a selective enrichment medium of reduced graphene oxide (rGO) with a specially designed micro thermal-assisted purge-and-trap sampling device was developed for efficient enrichment and sensitive quantification of trace tobacco VOCs coupling with thermal desorption (TD)-gas chromatography/ mass spectrometry (GC/MS). The prepared rGO has been proved to possess excellent enrichment selectivity and capacity for tobacco polar VOCs with the multi-layer structure, good thermal stability and large specific surface area. The specially designed sampling device was efficient and suitable for enriching and sampling trace polar tobacco VOCs coupling with rGO medium. Under the optimized sampling and analytical conditions, the established analytical method could be actually applied for quantification of typical tobacco polar VOCs with the good recoveries of 72.9–128% and the satisfied RSDs of 1.8–19.9% (n 5 3). The results suggested that the developed method was selective, sensitive and reliable for enrichment and quantification of trace tobacco polar VOCs.
Rocznik
Strony
263--272
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
  • Technology Centre, China Tobacco Guangdong Industrial Co., Ltd., Guangzhou 510385, China
autor
  • Technology Centre, China Tobacco Guangdong Industrial Co., Ltd., Guangzhou 510385, China
autor
  • School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
autor
  • School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
autor
  • Technology Centre, China Tobacco Guangdong Industrial Co., Ltd., Guangzhou 510385, China
autor
  • Technology Centre, China Tobacco Guangdong Industrial Co., Ltd., Guangzhou 510385, China
autor
  • Technology Centre, China Tobacco Guangdong Industrial Co., Ltd., Guangzhou 510385, China
autor
  • Technology Centre, China Tobacco Guangdong Industrial Co., Ltd., Guangzhou 510385, China
autor
  • Technology Centre, China Tobacco Guangdong Industrial Co., Ltd., Guangzhou 510385, China
autor
  • Technology Centre, China Tobacco Guangdong Industrial Co., Ltd., Guangzhou 510385, China
  • School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
autor
  • School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
Bibliografia
  • 1. Guo, C.; Guo, Z. P.; Chen, Y. A bi-end injection capillary electrophoresis method for simultaneous determination of 37 cations and anions in beers. Anal. Bioanal. Chem. 2019, 411, 4113–21.
  • 2. Cai, L.; Dong, J.; Wang, Y. R.; Chen, X. Thin-film microextraction coupled to surface enhanced Raman scattering for the rapid detection of benzoic acid in carbonated beverages. Talanta 2018, 178, 268–73.
  • 3. Liang, Y. S.; Liu, J. Q.; Zhong, Q. S.; Shen, L. L.; Yao, J. T.; Huang, T. H.; Zhou, T. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography. J. Sep. Sci. 2018, 41, 1600–9.
  • 4. Wu, X. H.; Si, S. Y.; Tan, W.; Lu, X.; Ye, F. G.; Zhao, S. L. Preparation of magnetic mesoporous metal-phenolic coordination spheres for extraction of crystal violet and leuco-metabolites in fish. J. Chromatogr. A. 2021, 1636, 461776.
  • 5. Zhu, S. Y.; Zheng, Z. J.; Peng, H. W.; Sun, J.; Zhao, X. E.; Liu, H. W. Quadruplex stable isotope derivatization strategy for the determination of panaxadiol and panaxatriol in foodstuffs and medicinal materials using ultra high performance liquid chromatography tandem mass spectrometry. J. Chromatgr. A. 2020, 1616, 460794.
  • 6. Chen, T.; Liu, C.; Chen, B.; Huang, Y. Study on discrimination of different grades of rapeseed oil based on flavor fingerprint. Acta Chromatogr. 2021, 33, 295–301.
  • 7. Liu, K.; Zhang, C.; Xu, J. Y.; Liu, Q. Q. Research advance in gas detection of volatile organic compounds released in rice quality deterioration process. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5802–28.
  • 8. Cui, Y. X.; Zhang, H. J.; Zhang, J. W.; Lv, B. Y.; Xie, B. The emission of volatile organic compounds during the initial decomposition stage of food waste and its relationship with the bacterial community. Environ. Technol. Innovation. 2022, 27, 102443.
  • 9. Reji, R.; Marappan, G.; Sivalingam, Y.; Surya, V. VOCs adsorption induced surface potential changes on phthalocyanines: a combined experimental and theoretical approach towards food freshness monitoring. Mater. Lett. 2022, 306, 130945.
  • 10. Yang, Y. X.; Lin, B. C.; Sun, C.; Tang, M. H.; Lu, S. Y.; Huang, Q. X.; Yan, J. H. Facile synthesis of tailored mesopore-enriched hierarchical porous carbon from food waste for rapid removal of aromatic VOCs. Sci. Total Environ. 2021, 773, 145453.
  • 11. Gong, X. H.; Huang, J.; Xu, Y. Q.; Li, Z. B.; Li, L.; Li, D.; Belwal, T.; Jeandet, P.; Luo, Z.; Xu, Y. Deterioration of plant volatile organic compounds in food: consequence, mechanism, detection, and control. Trends Food Sci. Technol. 2023, 131, 61–76.
  • 12. Banozic, M.; Jokic, S.; Ackar, Ð.; Blazic, M.; Subaric, D. Carbohydrates—key players in tobacco aroma formation and quality determination. Molecules 2020, 25, 1734.
  • 13. Berenguer, C.; Pereira, J. A. M.; Câmara, J. S. Fingerprinting the volatile profile of traditional tobacco and e-cigarettes: a comparative study. Microchem. J. 2021, 166, 106196.
  • 14. Pennings, J. L. A.; Cremers, J. W. J. M.; Becker, M. J. A.; Klerx, W. N. M.; Talhout, R. Aldehyde and volatile organic compound yields in commercial cigarette mainstream smoke are mutually related and depend on the sugar and humectant kontent in tobacco. Nicotine Tob. Res. 2020, 22(10), 1748–56.
  • 15. Lu, F. J.; Yu, M.; Chen, C. X.; Liu, L. J.; Zhao, P.; Shen, B. X.; Sun, R. The emission of VOCs and CO from heated tobacco products, electronic cigarettes, and conventional cigarettes, and their health risk. Toxics 2021, 10(1), 8.
  • 16. Wang, L. J.; Tian, J. N.; Yang, W.; Zhao, Y. C.; Zhao, S. L. A T7exonuclease-assisted target recycling amplification with graphene oxide acting as the signal amplifier for fluorescence polarization detection of human immunodeficiency virus (HIV) DNA. Luminescence 2016, 31, 573–9.
  • 17. Li, Z. L.; Li, N.; Du, L.; Wang, Y. H.; Fang, B.; Wang, M. M. Determination of trace hydroxyl polycyclic aromatic hydrocarbons in urine using graphene oxide incorporated monolith solid‐phase extraction coupled with LC/MS/MS. J. Sep. Sci. 2019, 42, 3234–42.
  • 18. Raza, W.; Ahmad, K.; Kim, H. Fabrication of defective graphene oxide for efficient hydrogen production and enhanced 4-nitrophenol reduction. Nanotechnology 2021, 32(49), 495404.
  • 19. Si, K.; Sun, C. F.; Cheng, S. S.; Wang, Y.; Hu, W. P. Cyclodextrin functionalized reduced graphene oxide for electrochemical Chirac differentiation of tartaric acid. Anal. Methods 2018, 10(29), 3660–5.
  • 20. Huang, Y. P.; Zhang, W. J.; Ruan, G. H.; Li, X. X.; Cong, Y. Z.; Du, F. Y.; Li, J. P. Reduced graphene oxide-hybridized polymeric high-internal phase emulsions for highly efficient removal of polycyclic aromatic hydrocarbons from water matrix. Langmuir 2018, 34(12), 3661–8.
  • 21. Chen, Y. S.; Zhang, Y. X.; Pan, F.; Liu, J.; Wang, K.; Zhang, C. L.; Cheng, S. L.; Lu, L. G.; Zhang, W.; Zhang, Z.; Zhi, X.; Zhang, Q.; Alfranca, G.; Fuente, J.; Chen, D.; Cui, D. Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons. ACS Nano 2016, 10, 8169–79.
  • 22. Naing, N. N.; Li, S. F. Y.; Lee, H. K. Evaluation of graphene-based sorbent in the determination of polar environmental contaminants in water by micro-solid phase extraction-high performance liquid chromatography. J. Chromatogr. A. 2016, 1427, 29–36.
  • 23. Chen, T.; Qi, X.; Chen, M.; Lu, D.; Chen, B. Discrimination of Chinese yellow wine from different origins based on flavor fingerprint. Acta Chromatogr. 2020, 32, 139–44.
  • 24. Thompson, R.; Perry, J. D.; Stanforth, S. P.; Dean, J. R. Detection of microbial nitroreductase activity by monitoring exogenous volatile organic compound production using HS-SPME-GC-MS. Separations 2020, 7, 64.
  • 25. Zhang, X. T.; Wang, R. N.; Zhang, L.; Wei, J. K.; Ruan, Y. B.; Wang, W. W.; Ji, H. W.; Liu, J. Simultaneous determination of four aldehydes in gas phase of mainstream smoke by headspace gas chromatography-mass spectrometry. Int. J. Anal. Chem. 2019, 2019, 2105839.
  • 26. Chen, X.; Zhang, B. Y.; Wang, D.; Chen, L.; Du, Z. X.; Wu, Y. P. Traceability of VOCs in tire inner liner by chromatography-mass spectrometry. Environ. Sci. Pollut. Res. 2022, 29, 9685–92.
  • 27. Ueta, I.; Komatsu, T.; Fujimura, K.; Saito, Y. Porous membraneassisted purge and trap sampling for determination of VOCs in gas chromatography with needle-type extraction device. Chromatographia 2022, 85, 7–12.
  • 28. Chen, T. Q.; Wang, Z. Method verification of soil volatile organic compounds. IOP Conference Series. IOP Conf. Series: Earth Environ. Sci. 2020, 558, 032028.
  • 29. Fan, Z. J.; Kai, W.; Yan, J.; Wei, T.; Zhi, L. J.; Feng, J.; Ren, Y. M.; Song, L. P.; Wei, F. Facile synthesis of graphene nanosheets via fereduction of exfoliated graphite oxide. ACS Nano 2011, 5, 191–8.
  • 30. Rattanakunsong, N.; Jullakan, S.; Płotka-Wasylka, J.; Bunkoed, O. A hierarchical porous composite magnetic sorbent of reduced graphene oxide embedded in polyvinyl alcohol cryogel for solventassisted‐solid phase extraction of polycyclic aromatic hydrocarbons. J. Sep. Sci. 2022, 45, 1774–83.
  • 31. Gao, W. S.; Ma, Y.; Zhang, Y. H.; Chen, Q. J.; Chen, H. Q.; Zhu, B. C.; Jia, J. J.; Huang, A. P.; Xie, K. F.; Bai, Y. Architecture & functionalization evolution of rGO affect physicomechanical properties of polyolefin/rGO composites. Composites. Part A. 2018, 107, 479–88.
  • 32. Soria, A. C.; García-Sarrió, M. J.; Sanz, M. L. Volatile sampling by headspace techniques. Trends Anal. Chem. 2015, 71, 85–99.
  • 33. Savareear, B.; Escobar-Arnanz, J.; Brokl, M.; Saxton, M. J.;Wright, C.; Liu, C.; Focant, J. Non-targeted analysis of the particulate phase of heated tobacco product aerosol and cigarette mainstream Tobacco smoke by thermal desorption comprehensive two-dimensional gas chromatography with dual flame ionisation and mass spectrometric detection. J. Chromatogr. A. 2019, 1603, 327–37.
  • 34. Marco, E.; Grimalt, J. O. A rapid method for the chromatographic analysis of volatile organic compounds in exhaled breath of Tobacco cigarette and electronic cigarette smokers. J. Chromatogr. A. 2015, 1410, 51–9.
  • 35. Ray, S. K.; Mohalik, N. K.; Khan, A. M.; Mishra, D.; Varma, N. K.; Pandey, J. K.; Singh, P. K. CFD modeling to study the effect of particle size on dispersion in 20l explosion chamber: an overview. Int. J. Min. Sci. Technol. 2020, 30, 321–7.
  • 36. Zhai, X. D.; Kariyama, I. D.; Wu, B. X. Investigation of the effect of intermittent minimal mixing intensity on methane production during anaerobic digestion of dairy manure. Comput. Electron. Agr. 2018, 155, 121–9.
  • 37. Xu, Y.; Yu, Z. N.; Chen, X. B.; Zhou, Y.; Zhou, K.; Zhang, Z. M.; Li, G. K. Rapid and accurate determination of trace volatile sulfur compounds in human halitosis by an adaptable active sampling system coupling with gas chromatography. J. Sep. Sci. 2020, 43, 1830–7.
  • 38. Chen, Z. Y.; Li, G. K.; Zhang, Z. M. Miniaturized array gas membrane separation strategy for rapid analysis of complex samples by surface-enhanced Raman scattering. Anal. Chim. Acta 2019, 1065, 29–39.
  • 39. Guo, L. H.; Ma, X. W.; Xie, X. W.; Huang, R. F.; Zhang, M. Y.; Li, J.; Zeng, G. L.; Fan, Y. M. Preparation of dual-dummy-template molecularly imprinted polymers coated magnetic graphene oxide for separation and enrichment of phthalate esters in water. Chem. Eng. J. 2019, 361, 245–55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad324619-a395-46b9-9ae9-c4757a8e300b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.