PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of spray distance on mechanical and tribological properties of HVOF sprayed WC-Co-Cr coatings

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the tungsten carbide reinforcement in cobalt matrix (WC-Co-Cr) coatings was studied. The deposition process was carried out by high-velocity oxy-fuel spraying (HVOF). The study aimed to investigate the influence of one of the key process parameters, namely spray distance, on the coatings’ microstructure and phase composition, as well as their mechanical and tribological properties. The manufactured coatings were analysed by scanning electron microscopy, X-ray diffraction (XRD), instrumented indentation test, pull-off adhesion test and ball-on-disc method. The results revealed that selection of proper spray distance caused a high index of carbide retention (ICR) amounting to 0.95, which promoted higher hardness and better wear resistance. Instrumental microhardness was in the range of 14.2–14.8 GPa, whereas the Young modulus exhibited values from 336 GPa up to 342 GPa. The bond strength of deposited coatings was in the range of 55–65 MPa. Wear factor values were in the range of 73–81 × 10−7 mm3/(N · m) and the friction coefficient was about 0.4. The dominant wear mechanism is abrasion and adhesive mode supported by the fatigue-induced material delamination.
Wydawca
Rocznik
Strony
545--554
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 5 Łukasiewicza Str., 50371 Wroclaw, Poland
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Str., 44100 Gliwice, Poland
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 5 Łukasiewicza Str., 50371 Wroclaw, Poland
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 5 Łukasiewicza Str., 50371 Wroclaw, Poland
  • Centre of Polymer and Carbon Materials Polish Academy of Sciences, 34 M. Curie-Skłodowskiej Str., 41819 Zabrze, Poland
Bibliografia
  • [1] Dwivedi DK. Surface engineering: Enhancing life of tribological components. Springer; 2018.
  • [2] Heimann RB. Plasma-spray coating: Principles and applications. 2nd ed. John Wiley & Sons; 2008.
  • [3] Pawłowski L. The science and engineering of thermal spray coatings. 2nd ed. John Wiley & Sons; 2008
  • [4] Donadei V, Koivoluoto H, Sarlin E, Vuoristo P. Lubricated icephobic coatings prepared by flame spraying with hybrid feedstock injection. Surf Coat Tech. 2020;403:126396. https://doi.org/10.1016/j.surfcoat.2020.126396.
  • [5] Czupryński A. Flame spraying of aluminum coatings reinforced with particles of carbonaceous materials as an alternative for laser cladding technologies. Materials. 2019;12:3467. https://doi.org/10.3390/ma12213467.
  • [6] Devaraj S, McDonald A, Chandra S. Metallization of porous polyethylene using a wire-arc spray process for heat transfer applications. J Therm Spray Techn. 2021;30:145–56. https://doi.org/10.1007/s11666-020-01119-1.
  • [7] Chmielewski T, Siwek P, Chmielewski M, Piątkowska A, Grabias A, Golański D. Structure and selected properties of arc sprayed coatings containing in-situ fabricated Fe-Al intermetallic phases. Metals. 2018;8:1059. https://doi.org/10.3390/met8121059.
  • [8] de la Roche J, Alvarado-Orozco JM, Gomez PA, Cano IG, Dosta S, Toro A. Hot corrosion behavior of dense CYSZ/YSZ bilayer coatings deposited by atmospheric plasma spray in Na2SO4 + V2O5 molten salts. Surf Coat Tech. 2022;432:128066. https://doi.org/10.1016/j.surfcoat.2021.128066.
  • [9] Łatka L, Michalak M, Szala M, Walczak M, Sokołowski P, Ambroziak A. Influence of 13 wt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings. Surf Coat Tech. 2021;410:126979. https://doi.org/10.1016/j.surfcoat.2021.126979.
  • [10] Huang C, Arseenko M, Zhao L, Xie Y, Elsenberg A, Li W, et al. Property prediction and crack growth behavior in cold sprayed Cu deposits. Mater Design. 2021;206:109826. https://doi.org/10.1016/j.matdes.2021.109826.
  • [11] Winnicki M, Gibas A, Baszczuk A, Jasiorski M. Low pressure cold spraying of TiO2 on acrylonitrile butadiene styrene (ABS). Surf Coat Tech. 2021;406:126717. https://doi.org/10.1016/j.surfcoat.2020.126717.
  • [12] Singh V, Singh I, Bansal A, Omer A, Singla AK, Rampal A, Goyal DK. Cavitation erosion behavior of high velocity oxy fuel (HVOF) sprayed (VC + CuNi-Cr) based novel coatings on SS316 steel. Surf Coat Tech. 2022;432:128052. https://doi.org/10.1016/j.surfcoat.2021.128052.
  • [13] Praveen AS, Arjunan A. High-temperature oxidation and erosion of HVOF sprayed NiCrSiB/Al2O3 and NiCrSiB/WC–Co coatings. Appl Sur Sci Adv. 2022;7:100191. https://doi.org/10.1016/j.apsadv.2021.100191.
  • [14] Fauchais PL, Heberlein JVR, Boulos MI. Thermal spray fundamentals, from powder to part. Springer; 2014.
  • [15] Lima RS, Marple BR. Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: A review. J Therm Spray Techn. 2007;16:40–63. https://doi.org/10.1007/s11666-006-9010-7.
  • [16] Picas JA, Forn A, Matthaus G. HVOF coatings as an alternative to hard chrome for pistons and valves. Wear. 2006;261:477–84. https://doi.org/10.1016/j.wear.2005.12.005.
  • [17] Kiilakoski J, Langlade C, Koivuluoto H, Vuoristo P. Characterizing the micro-impact fatigue behavior of APS and HVOF sprayed ceramic coatings. Surf Coat Tech. 2019;371:245–54. https://doi.org/10.1016/j.surfcoat.2018.10.097.
  • [18] Mousavi SE, Naghshehkesh N, Amirnejad M, Shammakhi H, Sonboli A. Wear and corrosion properties of stellite-6 coating fabricated by HVOF on nickel–aluminium bronze substrate. Met Mater Int. 2020;27:3269–81. https://doi.org/10.1007/s12540-020-00697-7.
  • [19] Qiao L, Wu Y, Hong S, Long W, Cheng J. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceram Int. 2021;47:1829–36. https://doi.org/10.1016/j.ceramint.2020.09.009.
  • [20] Jackson L, Ivosevic M, Knight R, Cairncross RA. Sliding wear properties of HVOF thermally sprayed nylon-11 and nylon-11/ceramic composites on steel. J Therm Spray Technol. 2007;16:927–32. https://doi.org/10.1007/s11666-007-9088-6.
  • [21] Houdkova S, Zahalka F, Kasparova M, Berger L-M. Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement. Tribol Lett. 2011;43:139–54. https://doi.org/10.1007/s11249-011-9791-9.
  • [22] Krelling AP, de Souza MM, da Costa CE, Giubilei Milan JC. HVOF-sprayed coating over AISI 4140 steel for hard chromium replacement. Mater Res. 2018;21:e20180138. https://doi.org/10.1590/1980-5373-MR-2018-0138.
  • [23] Berger L-M. Application of hardmetals as thermal spray coatings. Int J Refract Hard Met. 2015;49:350–64. https://doi.org/10.1016/j.ijrmhm.2014.09.029.
  • [24] Ma N, Guo L, Cheng Z, Wu H, Ye F, Zhang K. Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure. Appl Surf Sci. 2014;320:364–71. https://doi.org/10.1016/j.apsusc.2014.09.081.
  • [25] Chen H, Gou GQ, Tu MJ, Liu Y. Structure and wear behaviour of nanostructured and ultrafine HVOF spraying WC-17Co coatings. Surface Eng. 2009;25:502–6. https://doi.org/10.1179/026708408X329489.
  • [26] Ward LP, Pilkington A. The dry sliding wear behavior of HVOF-sprayed WC: Metal composite coatings. J Mater Eng Perform. 2014;23:3266–78. https://doi.org/10.1007/s11665-014-1122-5.
  • [27] Murthy JKN, Venkataraman B. Abrasive wear behaviour of WC-CoCr and Cr3C2-20(NiCr) deposited by HVOF and detonation spray processes. Surf Coat Tech. 2006;200:2642–52. https://doi.org/10.1016/j.surfcoat.2004.10.136.
  • [28] Fang W, Cho TY, Yoon JH, Song KO, Hur SK, Youn SJ, et al. Processing optimization, surface properties and wear behavior of HVOF spraying WC–CrC–Ni coating. J Mater Process Tech. 2009;209:3561–7. https://doi.org/10.1016/j.jmatprotec.2008.08.024.
  • [29] Bang SS, Park YC, Lee JW, Hyun SK, Kim TB, Lee JK, et al. Effect of the spray distance on the properties of high velocity oxygen-fuel (HVOF) sprayed WC-12Co coatings. J Nanosci Nanotechnol. 2018;18:1931–4. https://doi.org/10.1166/jnn.2018.14990.
  • [30] Hong S, Wu Y, Zheng Y, Wang B, Gao W, Li G, et al. Effect of spray parameters on the corrosion behavior of HVOF sprayed WC-Co-Cr coatings. J Mater Eng Perform. 2014;23:1434–9. https://doi.org/10.1007/s11665-014-0865-3.
  • [31] Lee L, Kim S. Influence of thermally sprayed WC-Co-Cr coatings on the corrosion characteristics of Ni-Al bronze alloy. Int J Electrochem Sci. 2021;16:210769. https://doi.org/10.20964/2021.07.40.
  • [32] Gui M, Eybel R, Asselin B, Radhakrishnan S, Cerps J. Influence of processing parameters on residual stress of high velocity oxy-fuel thermally sprayed WC-Co-Cr coating. J Mater Eng Perform. 2012;21:2090–8. https://doi.org/10.1007/s11665-012-0134-2.
  • [33] Jonda E, Łatka L. Comparative analysis of mechanical properties of WC-based cermet coatings sprayed by HVOF onto AZ31 magnesium alloy substrates. Adv Sci Technol Res J. 2021;15:57–64. https://doi.org/10.12913/22998624/135979.
  • [34] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83. https://doi.org/10.1557/JMR.1992.1564.
  • [35] Łatka L, Chicot D, Cattini A, Pawłowski L, Ambroziak A. Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings. Surf Coat Technol. 2013;220:131–9. https://doi.org/10.1016/j.surfcoat.2012.07.025.
  • [36] Lancaster JK. The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear. 1967;10:103–17. https://doi.org/10.1016/0043-1648(67)90082-8.
  • [37] Aguero A, Camon F, Garcıa de Blas J, del Hoyo JC, Muelas R, Santaballa A, et al. HVOF-deposited WCCoCr as replacement for hard Cr in landing gear actuators. J Therm Spray Techn. 2011;20:1292–309. https://doi.org/10.1007/s11666-011-9686-1.
  • [38] Ding X, Ke D, Yuan C, Ding Z, Cheng X. Microstructure and cavitation erosion resistance of HVOF deposited WC-Co coatings with different sized WC. Coatings. 2018;8:307. https://doi.org/10.3390/coatings8090307.
  • [39] Hong S, Wu Y, Wang B, Lin J. Improvement in tribological properties of Cr12MoV coldWork die steel by HVOF sprayed WC-Co-Cr cermet coatings. Coatings. 2019;9:825. https://doi.org/10.3390/coatings9120825.
  • [40] Wang H, Qiu Q, Gee M, Hou C, Liu X, Song X. Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densification of starting powder. Mater Des. 2020;191:108586. https://doi.org/10.1016/j.matdes.2020.108586.
  • [41] Song B, Murray JW, Wellman RG, Pala Z, Hussain T. Dry sliding wear behaviour of HVOF thermal sprayed WC-Co-Cr and WC-CrxCy-Ni coatings. Wear. 2020;442–443:203114. https://doi.org/10.1016/j.wear.2019.203114.
  • [42] Zhan S-H, Cho T-Y, Yoon J-H, Li M-X, Shum PW, Kwon S-C. Investigation on microstructure, surface properties and anti-wear performance of HVOF sprayed WC-Cr-Ni coatings modified by laser heat treatment. Mater Sci Eng B. 2009;162:127–34. https://doi.org/10.1016/j.mseb.2009.03.017.
  • [43] Yao H-L, Yang C, Yi D-L, Zhang M-X, Wang H-T, Chen Q-Y, et al. Microstructure and mechanical property of high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings. Surf Coat Tech. 2020;397:126010. https://doi.org/10.1016/j.surfcoat.2020.126010.
  • [44] Murugan K, Ragupathy A, Balasubramanian V, Sridhar K. Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC-10Co-4Cr coatings. Surf Coat Tech. 2014;247:90–102. https://doi.org/10.1016/j.surfcoat.2014.03.022.
  • [45] Myalska H, Lusvarghi L, Bolelli G, Sassatelli P, Moskal G. Tribological behavior of WC-Co HVAF-sprayed composite coatings modified by nano-sized TiC addition. Surf Coat Tech. 2019;371:401–16. https://doi.org/10.1016/j.surfcoat.2018.09.017.
  • [46] Mateen A, Saha GC, Khan TI, Khalid F. Tribological behavior of HVOF sprayed near-nanostructured and microstructured WC-17wt.%Co coatings. Surf Coat Tech. 2011;206:1077–84. https://doi.org/10.1016/j.surfcoat.2011.07.075.
  • [47] Karimi A, Verdon Ch, Barbezat G. Microstructure and hydroabrasive wear behaviour of high velocity oxy-fuel thermally sprayed WC-Co(Cr) coatings. Surf Coat Tech. 1993;57:81–9. https://doi.org/10.1016/0257-8972(93)90340-T.
  • [48] Bartuli C, Valente T, Cipri F, Bemporad E, Tului M. Parametric study of an HVOF process for the deposition of nanostructured WC-Co coatings. J Therm Spray Techn. 2005;14:187–95. https://doi.org/10.1361/10599630523746.
  • [49] Picas JA, Ruperez E, Punset M, Forn A. Influence of HVOF spraying parameters on the corrosion resistance of WC–CoCr coatings in strong acidic environment. Surf Coat Tech. 2013;225:47–57. https://doi.org/10.1016/j.surfcoat.2013.03.015.
  • [50] Bolelli G, Berger L-M, Borner T, Koivuluoto H, Lusvarghi L, Lyphout C, et al. Tribology of HVOF- and HVAF-sprayed WC–10Co4Cr hardmetal coatings: A comparative assessment. Surf Coat Tech. 2015;265:125–44. https://doi.org/10.1016/j.surfcoat.2015.01.048.
  • [51] Bolelli G, Berger L-M, Bonetti M, Lusvarghi L. Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W,Cr)2C–Ni and WC–CoCr hard metal coatings. Wear. 2014;309:96–111. https://doi.org/10.1016/j.wear.2013.11.001.
  • [52] Matikainen V, Peregrina SR, Ojala N, Koivuluoto H, Schubert J, Houdkova S, et al. Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes. Surf Coat Tech. 2019;370:196–212. https://doi.org/10.1016/j.surfcoat.2019.04.067.
  • [53] Santana YY, La J, Barbera-Sosa G, Caro J, Puchi-Cabrera ES, Staia MH. Mechanical properties and microstructure of WC–10Co–4Cr and WC–12Co thermal spray coatings deposited by HVOF. Surf Eng. 2008;24:374–82. https://doi.org/10.1179/174329408X326380.
  • [54] Ang A, Berndt CC. A review of testing methods for thermal spray coatings. Int Mater Rev. 2014;59:179–223. https://doi.org/10.1179/1743280414Y.0000000029.
  • [55] Garfias Bulnes A, Albaladejo Fuentes V, Garcia Cano I, Dosta S. Understanding the influence of high velocity thermal spray techniques on the properties of different anti-wear WC-based coatings. Coatings. 2020;10:1157. https://doi.org/10.3390/coatings10121157.
  • [56] Wesmann JAR, Kuroda S, Espallargas N. The role of oxide tribofilms on friction and wear of different thermally sprayed WC-CoCr. J Therm Spray Technol. 2017;26:492–502. https://doi.org/10.1007/s11666-017-0522-0.
  • [57] Xie M, Zhang S, Li M. Comparative investigation on HVOF sprayed Carbide-based coatings. Appl Surf Sci. 2013;273:799–805. https://doi.org/10.1016/j.apsusc.2013.03.010.
  • [58] Wang H, Wang X, Song X, Liu XX, Liu XX. Sliding wear behavior of nanostructured WC-Co-Cr coatings. Appl Surf Sci. 2015;355:453–60 https://doi.org/10.1016/j.apsusc.2015.07.144.
  • [59] Federeci M, Menapace C, Moscatelli A, Gialanella S, Straffelini G. Pin-on-disc study of a friction material dry sliding against HVOF coated discs at room temperature and 300°C. Tribol Int. 2017;115:89–99. https://doi.org/10.1016/j.triboint.2017.05.030.
  • [60] Bhosale DG, Rathod WS. Tribological behaviour of atmospheric plasma and high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings at elevated temperatures. Ceram Int. 2020;46:12373–85. https://doi.org/10.1016/j.ceramint.2020.01.288.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad2cfa11-0271-4bc9-8d59-1745af773b68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.