ON FIBONACCI NUMBERS IN EDGE COLOURED TREES

Urszula Bednarz, Dorota Bród, Anetta Szynal-Liana, Iwona Włoch, and Małgorzata Wołowiec-Musiał
Communicated by Gyula O.H. Katona

Abstract

In this paper we show the applications of the Fibonacci numbers in edge coloured trees. We determine the second smallest number of all $(A, 2 B)$-edge colourings in trees. We characterize the minimum tree achieving this second smallest value.

Keywords: edge colouring, tree, tripod, Fibonacci numbers.
Mathematics Subject Classification: 11B37, 11C20, 15B36, 05C69.

1. INTRODUCTION AND PRELIMINARY RESULTS

The n-th Fibonacci number F_{n} is defined recursively by the second order linear recurrence relation of the form $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ with the initial conditions $F_{0}=F_{1}=1$. Research on graph interpretations of the Fibonacci numbers were initiated in 1982 by H. Prodinger and R.F. Tichy in [4]. They showed that the number of all independent sets in n-vertex path is equal to F_{n}. This simple observation triggered counting problems in graphs related to the Fibonacci numbers. In this paper we consider a special parameter in edge coloured graph which allows to get another graph interpretation of the Fibonacci numbers.

For concepts not defined here see $[2,3]$. Let G be a finite, undirected, simple graph with the vertex set $V(G)$ and the edge set $E(G)$. The order (number of vertices) and size (number of edges) of G are denoted by n and m, respectively. By $P(m), T(m)$ and $S(m)$ we denote a path, a tree and a star of size m, respectively. Recall that in a tree a vertex of degree at least 3 is a branch vertex, a vertex of degree 1 is a leaf. A tripod is a tree with exactly three leaves. In other words, every tripod has a unique branch vertex being the initial vertex of three elementary paths. Let $m \geq 3, p \geq 1$, $t \geq 1$ be integers. By $T(m, p, t)$ we mean a tripod of size m with paths of lengths p, t and $m-p-t$, starting from the branch vertex. These paths we will denote shortly: p-path, t-path and $(m-p-t)$-path, respectively.

We begin with a definition of $(A, 2 B)$-edge colouring. Let G be a connected graph and let $\mathcal{C}=\{A, B\}$ be a set of two colours. A graph G is $(A, 2 B)$-edge coloured if for every maximal (with respect to set inclusion) B-monochromatic subgraph H of G there exists a partition of H into edge disjoint paths of length 2 . We have no restriction on the colour A, so $(A, 2 B)$-edge colouring exists for an arbitrary graph G. It is worth mentioning that the concept of $(A, 2 B)$-edge colouring is a special case of edge shade colouring of a graph (more details for edge shade colouring can be found in [1]).

Now, assume that \mathcal{F} is a family of all distinct $(A, 2 B)$-edge coloured graphs obtained by colouring of G, i.e. $\mathcal{F}=\left\{G^{(1)}, G^{(2)}, \ldots, G^{(l)}\right\}$, where $l \geq 1$ and $G^{(p)}$ denotes a graph obtained by $(A, 2 B)$-edge colouring of the graph G for $p=1,2, \ldots l$. Let $\theta\left(G^{(p)}\right)$, where $1 \leq p \leq l$, be the number of all partitions into edge disjoint paths of length 2 of all B-monochromatic subgraphs of $G^{(p)}$. If $G^{(p)}$ is A-monochromatic then we put $\theta\left(G^{(p)}\right)=1$. Let us define a parameter $\sigma_{(A, 2 B)}(G)$ as follows:

$$
\sigma_{(A, 2 B)}(G)=\sum_{p=1}^{l} \theta\left(G^{(p)}\right)
$$

The parameter $\sigma_{(A, 2 B)}(G)$ was studied for different classes of graphs (see [1]). We recall the main result for trees.
Theorem 1.1 ([1]). Let $T(m)$ be a tree of size $m, m \geq 1$. Then

$$
F_{m} \leq \sigma_{(A, 2 B)}(T(m)) \leq 1+\sum_{j \geq 1}\binom{m}{2 j} \prod_{p=0}^{j-1}[2 j-(2 p+1)]
$$

Moreover, $\sigma_{(A, 2 B)}(P(m))=F_{m}$ and

$$
\sigma_{(A, 2 B)}(S(m))=1+\sum_{j \geq 1}\binom{m}{2 j} \prod_{p=0}^{j-1}[2 j-(2 p+1)]
$$

From the above theorem follows that the graph $P(m)$ is the extremal tree achieving the minimum value of the parameter $\sigma_{(A, 2 B)}(T(m))$ and the graph $S(m)$ is the extremal tree achieving the maximum value of the parameter $\sigma_{(A, 2 B)}(T(m))$. It is natural to ask what are extremal trees achieving the second smallest and the second largest value of this parameter. In this paper we give the lower bound of the parameter $\sigma_{(A, 2 B)}(T(m))$ with the restriction that $T(m) \not \approx P(m)$ and we describe the extremal graph achieving the second smallest value of the parameter $\sigma_{(A, 2 B)}(T(m))$.

In the sequel we will use the following notation. If $e \in E(G)$ is a fixed edge that is coloured by the colour A then we will write $c(e)=A$. If e is coloured by the colour B then we will write $c(e)=2 B$ to indicate that there is an edge e^{\prime} adjacent to e and coloured by the colour B. Moreover, we will write $\sigma_{A(e)}(G)$ (resp. $\left.\sigma_{2 B(e)}(G)\right)$ to denote the number of all $(A, 2 B)$-edge colourings of G with $c(e)=A$ (resp. $c(e)=2 B$). The following lemmas give the basic rules for determining the parameter $\sigma_{(A, 2 B)}(G)$.
Lemma 1.2. Let $e \in E(G)$ be a fixed edge. Then

$$
\begin{equation*}
\sigma_{(A, 2 B)}(G)=\sigma_{A(e)}(G)+\sigma_{2 B(e)}(G) \tag{1.1}
\end{equation*}
$$

Lemma 1.3. Let $G=H \cup T(l) \cup\{e\}$ be a connected graph, where H is a connected graph, $T(l)$ is a tree of size $l, l \geq 1$ and H and $T(l)$ are vertex disjoint. Assume that $e=u v$, where $u \in V(H), v \in V(T(l))$ and e is a bridge in G. Then

$$
\sigma_{(A, 2 B)}(G) \geq \sigma_{(A, 2 B)}(H \cup P(l) \cup\{e\})
$$

Moreover, the equality holds if $T(l) \cong P(l)$.
Proof. Let $G=H \cup T(l) \cup\{e\}$ and $e=u v \in E(G)$ with $u \in V(H)$ and $v \in V(T(l))$. We distinguish the following cases:
Case 1. $c(e)=A$.
Then $\sigma_{A(e)}(G)=\sigma_{(A, 2 B)}(H) \sigma_{(A, 2 B)}(T(l))$.
Case 2. $c(e)=2 B$.
Then there exists an edge, say $e^{\prime} \in E(G)$, adjacent to the edge e, such that $\left\{e, e^{\prime}\right\}$ belongs to a partition of $2 B$-monochromatic subgraph of G and $c\left(e^{\prime}\right)=2 B$. Clearly, either $e^{\prime} \in E(H)$ or $e^{\prime} \in E(T(l))$. Hence

$$
\sigma_{2 B(e)}(G)=\sigma_{2 B(e)}(H \cup\{e\}) \sigma_{(A, 2 B)}(T(l))+\sigma_{(A, 2 B)}(H) \sigma_{2 B(e)}(T(l) \cup\{e\})
$$

Consequently,

$$
\begin{aligned}
\sigma_{(A, 2 B)}(G)= & \sigma_{(A, 2 B)}(H) \sigma_{(A, 2 B)}(T(l))+\sigma_{2 B(e)}(H \cup\{e\}) \sigma_{(A, 2 B)}(T(l)) \\
& +\sigma_{(A, 2 B)}(H) \sigma_{2 B(e)}(T(l) \cup\{e\}) .
\end{aligned}
$$

By Theorem 1.1, we have $\sigma_{(A, 2 B)}(T(l))>\sigma_{(A, 2 B)}(P(l))$. Hence

$$
\begin{aligned}
\sigma_{(A, 2 B)}(G) \geq & \sigma_{(A, 2 B)}(H) \sigma_{(A, 2 B)}(P(l))+\sigma_{2 B(e)}(H \cup\{e\}) \sigma_{(A, 2 B)}(P(l)) \\
& +\sigma_{(A, 2 B)}(H) \sigma_{2 B(e)}(P(l+1))=\sigma_{(A, 2 B)}(H \cup P(l) \cup\{e\}),
\end{aligned}
$$

which completes the proof.

2. EXTREMAL TRIPODS WITH RESPECT TO $\sigma_{(A, 2 B)}(T(m, p, t))$

As it was mentioned earlier the path $P(m)$ is the extremal graph achieving the minimum value of the parameter $\sigma_{(A, 2 B)}(T(m))$ in the class of trees of size m. Looking for the second smallest value of the parameter $\sigma_{(A, 2 B)}$ in trees of size m let us consider the class of trees $T(m)$ such that $T(m) \nRightarrow P(m)$. This means that there exists at least one branch vertex in $T(m)$. We start with the class of tripods because results obtained for this class will be crucial for the main result. Assume that $\mathcal{T}=\{T(m, p, t) ; m \geq 3, p \geq 1, t \geq 1\}$ is the family of tripods.

Theorem 2.1. Let $m \geq 3, p \geq 1, t \geq 1$ be integers. Then for an arbitrary tripod $T(m, p, t) \in \mathcal{T}$ holds

$$
\begin{equation*}
\sigma_{(A, 2 B)}(T(m, p, t))=F_{p+t} F_{m-t-p}+F_{m-t-p-1}\left(F_{p-1} F_{t}+F_{p} F_{t-1}\right) \tag{2.1}
\end{equation*}
$$

Proof. Let $T(m, p, t) \in \mathcal{T}$. If $m=3$ then $p=t=1$ and by the simple observation we have

$$
\sigma_{(A, 2 B)}(T(3,1,1))=4=F_{2} F_{1}+F_{0}\left(F_{0} F_{1}+F_{1} F_{0}\right)
$$

Let $m \geq 4$ and let $x \in V(T(m, p, t))$ be the unique branch vertex of a tripod. Clearly $p \geq 2$ or $t \geq 2$ or $m-p-t \geq 2$. Without loss of generality suppose that $m-p-t \geq 2$. Let $e \in E(T(m, p, t))$ be the edge incident with the vertex x and e belongs to $(m-p-t)$-path of $T(m, p, t)$.

Consider the following cases:
Case 1. $c(e)=A$.
Then edges adjacent to e are coloured by A or $2 B$. This means that we have exactly $F_{p+t} F_{m-t-p-1}$ distinct $(A, 2 B)$-edge colourings with $c(e)=A$.
Case 2. $c(e)=2 B$.
Then there exists an edge, say $e^{\prime} \in E(T(m, p, t))$, adjacent to e and coloured by $2 B$ and $\left\{e, e^{\prime}\right\}$ belongs to a partition of $2 B$-monochromatic subgraph of $T(m, p, t)$. Clearly e^{\prime} belongs to either p-path or t-path or $(m-t-p)$-path. Considering all these possibilities we obtain $F_{p-1} F_{t} F_{m-t-p-1}+F_{p} F_{t-1} F_{m-t-p-1}+F_{p+t} F_{m-t-p-2}$ $(A, 2 B)$-edge colourings with $c(e)=2 B$.

Finally, by the above, by Lemma 1.2 and by simple calculations we obtain

$$
\begin{aligned}
\sigma_{(A, 2 B)}(T(m, p, t))= & F_{p+t} F_{m-t-p-1}+F_{p-1} F_{t} F_{m-t-p-1} \\
& +F_{t-1} F_{p} F_{m-t-p-1}+F_{p+t} F_{m-t-p-2} \\
= & F_{p+t} F_{m-t-p}+F_{m-t-p-1}\left(F_{p-1} F_{t}+F_{p} F_{t-1}\right)
\end{aligned}
$$

which ends the proof.
Corollary 2.2. Let $m \geq 3, t \geq 1$ be integers. Then
a) $\sigma_{(A, 2 B)}(T(m, 1, t))=F_{t+1} F_{m-t}$,
b) $\sigma_{(A, 2 B)}(T(m, 1,1))=2 F_{m-1}$.

Proof. a) Applying (2.1) for $p=1$ and using the definition of Fibonacci numbers we have

$$
\begin{aligned}
\sigma_{(A, 2 B)}(T(m, 1, t)) & =F_{t+1} F_{m-t-1}+F_{m-t-2}\left(F_{t}+F_{t-1}\right) \\
& =F_{t+1}\left(F_{m-t-1}+F_{m-t-2}\right)=F_{t+1} F_{m-t} .
\end{aligned}
$$

b) Analogously by Theorem 2.1 for $p=t=1$ we obtain

$$
\sigma_{(A, 2 B)}(T(m, 1,1))=F_{2} F_{m-2}+2 F_{m-3}=2 F_{m-1}
$$

Using the above results we can give the maximum value of the parameter $\sigma_{(A, 2 B)}(T(m, p, t))$. We will need the following well-known identities:

$$
\begin{align*}
& F_{m-1}=F_{p+t} F_{m-p-t-1}+F_{p+t-1} F_{m-p-t-2} \tag{2.2}\\
& F_{m+n}=F_{m} F_{n}+F_{m-1} F_{n-1} \tag{2.3}
\end{align*}
$$

Theorem 2.3. Let $m \geq 4, p \geq 1, t \geq 1$ be integers. Then for an arbitrary tripod $T(m, p, t) \in \mathcal{T}$ holds

$$
\sigma_{(A, 2 B)}(T(m, p, t)) \leq 2 F_{m-1}
$$

Moreover, $\sigma_{(A, 2 B)}(T(m, p, t))=2 F_{m-1}$ iff $T(m, p, t) \cong T(m, 1,1)$.
Proof. It suffices to prove that

$$
F_{p+t} F_{m-t-p}+F_{m-t-p-1}\left(F_{p-1} F_{t}+F_{p} F_{t-1}\right)-2 F_{m-1} \leq 0
$$

Applying (2.2) and the definition of Fibonacci numbers we have

$$
\begin{aligned}
& F_{p+t} F_{m-t-p}+F_{m-t-p-1}\left(F_{p-1} F_{t}+F_{p} F_{t-1}\right)-2 F_{p+t} F_{m-t-p-1}-2 F_{t+p-1} F_{m-t-p-2} \\
& =F_{p+t} F_{m-t-p-1}+F_{p+t} F_{m-t-p-2}+F_{m-t-p-1}\left(F_{p-1} F_{t}+F_{p} F_{t-1}\right) \\
& \quad-2 F_{p+t} F_{m-t-p-1}-2 F_{t+p-1} F_{m-t-p-2} \\
& =F_{m-t-p-1}\left(F_{p+t}+F_{p-1} F_{t}+F_{p} F_{t-1}-2 F_{p+t}\right)+F_{m-t-p-2}\left(F_{p+t}-2 F_{p+t-1}\right) .
\end{aligned}
$$

By (2.3), we obtain

$$
\begin{aligned}
& F_{m-t-p-1}\left(F_{p-1} F_{t}+F_{p} F_{t-1}-F_{p} F_{t}-F_{p-1} F_{t-1}\right) \\
& \quad+F_{m-t-p-2}\left(F_{p+t-1}+F_{p+t-2}-2 F_{p+t-1}\right) \\
& =F_{m-t-p-1}\left(F_{t}\left(F_{p-1}-F_{p}\right)-F_{t-1}\left(F_{p-1}-F_{p}\right)\right)+F_{m-t-p-2}\left(F_{p+t-2}-F_{p+t-1}\right) \\
& =F_{m-t-p-1}\left(F_{p-1}-F_{p}\right)\left(F_{t}-F_{t-1}\right)+F_{m-t-p-2}\left(F_{p+t-2}-F_{p+t-1}\right) \leq 0
\end{aligned}
$$

by $F_{p-1} \leq F_{p}$ and $F_{p+t-2} \leq F_{p+t-1}$.
Moreover, the equality holds if and only if $F_{p+t-2}=F_{p+t-1}$ and $F_{p-1}=F_{p}$ or $F_{p+t-2}=F_{p+t-1}$ and $F_{t}=F_{t-1}$. Clearly, $F_{p+t-2}=F_{p+t-1}$ only for $p+t-2=0$ and $p+t-1=1$. Hence $p+t=2$, so $p=t=1$. Consequently, $F_{p-1}=F_{p}$ and $F_{t}=F_{t-1}$, which immediately gives that the extremal tripod achieving the maximum value of the parameter $\sigma_{(A, 2 B)}(T(m, p, t))$ is only the tripod $T(m, 1,1)$.

Now we give the recurrence rule for determining the parameter $\sigma_{(A, 2 B)}(T(m, p, t))$.
Theorem 2.4. Let $m \geq 3, p \geq 1, t \geq 1$ be integers. Then for an arbitrary tripod $T(m, p, t) \in \mathcal{T}$ and $m-p-t \geq 3$ holds

$$
\begin{equation*}
\sigma_{(A, 2 B)}(T(m, p, t))=\sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}(T(m-2, p, t)) \tag{2.4}
\end{equation*}
$$

with initial conditions
$\sigma_{(A, 2 B)}(T(p+t+1, p, t))=F_{p+1} F_{t+1}$ and $\sigma_{(A, 2 B)}(T(p+t+2, p, t))=F_{p+1} F_{t+1}+F_{p+t}$.
Proof. Let $T(m, p, t) \in \mathcal{T}$. If $m=p+t+1$ then $(m-p-t)$-path has length 1 . Let $e \in E(T(p+t+1, p, t))$ be the unique edge of the $(m-p-t)$-path. We distinguish the following cases.
Case 1. $c(e)=A$.
Then edges adjacent to e are coloured by A or $2 B$. This means that $T(p+t+1, p, t) \backslash e \cong$ $P(p+t)$ and, by Theorem 1.1, $\sigma_{A(e)}(T(p+t+1, p, t))=F_{p+t}$.

Case 2. $c(e)=2 B$.
Then there exists an edge $e^{\prime} \in E(T(p+t+1, p, t) \backslash e)$ adjacent to e such that $c\left(e^{\prime}\right)=2 B$. Clearly e^{\prime} belongs to either p-path or t-path, by $m=p+t+1$. Considering these two possibilities we obtain that $\sigma_{2 B(e)}(T(p+t+1, p, t))=F_{p-1} F_{t}+F_{p} F_{t-1}$.

Consequently, by (2.3), we have

$$
\begin{aligned}
\sigma_{(A, 2 B)}(T(p+t+1, p, t)) & =F_{p+t}+F_{p-1} F_{t}+F_{p} F_{t-1} \\
& =F_{p} F_{t}+F_{p-1} F_{t-1}+F_{p-1} F_{t}+F_{p} F_{t-1} \\
& =F_{t}\left(F_{p}+F_{p-1}\right)+F_{t-1}\left(F_{p}+F_{p-1}\right) \\
& =F_{t+1} F_{p+1} .
\end{aligned}
$$

If $m=p+t+2$ then, with respect to an edge $e \in E(T(m+p+t+2, p, t))$ belonging to the $(m-p-t)$-path and incident with a leaf, we obtain

$$
\begin{aligned}
\sigma_{(A, 2 B)}(T(p+t+2, p, t)) & =F_{p+t}+\sigma_{(A, 2 B)}(T(p+t+1, p, t)) \\
& =F_{p+t}+F_{t+1} F_{p+1} .
\end{aligned}
$$

Assume now $m-p-t \geq 3$. Let $e \in E(T(m, p, t))$ be an edge of the $(m-p-t)$-path incident with a leaf. By analogy we obtain

$$
\sigma_{(A, 2 B)}(T(m, p, t))=\sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}(T(m-2, p, t)),
$$

which completes the proof.

Solving the recurrence relation (2.4) we obtain the Binet formulas for the parameters $\sigma_{(A, 2 B)}(T(m, 1,1))$ and $\sigma_{(A, 2 B)}(T(m, 2,2))$.

$$
\begin{aligned}
\sigma_{(A, 2 B)}(T(m, 1,1))= & \frac{2 \sqrt{5}}{5}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{m}-\left(\frac{1-\sqrt{5}}{2}\right)^{m}\right] \quad \text { for } m \geq 3 \\
\sigma_{(A, 2 B)}(T(m, 2,2))= & \left(\frac{4 \sqrt{5}}{5}-1\right)\left(\frac{1+\sqrt{5}}{2}\right)^{m} \\
& -\left(\frac{4 \sqrt{5}}{5}+1\right)\left(\frac{1-\sqrt{5}}{2}\right)^{m} \quad \text { for } m \geq 5
\end{aligned}
$$

We shall show that $T(m, 2,2)$ is the extremal tripod achieving the minimum value of the parameter $\sigma_{(A, 2 B)}(T(m, p, t))$ in the class \mathcal{T}. Consider non-isomorphic tripods of size $m=5,6$ (Figs 1 and 2).

Fig 1. All non-isomorphic tripods of size 5

Fig 2. All non-isomorphic tripods of size 6

For these tripods values of the parameter $\sigma_{(A, 2 B)}(T(m, p, t))$ are given in Table 1.
Table 1.

$T(m, p, t)$	$T(5,2,2)$	$T(5,3,1)$	$T(6,2,2)$	$T(6,3,2)$	$T(6,4,1)$
$\sigma_{(A, 2 B)}(T(m, p, t))$	9	10	14	15	16

Theorem 2.5. Let $m \geq 5, p \geq 1, t \geq 1$ be integers. Then for an arbitrary tripod $T(m, p, t) \in \mathcal{T}$ holds

$$
\sigma_{(A, 2 B)}(T(m, p, t)) \geq F_{m-1}+2 F_{m-3}
$$

Moreover, the equality holds if $T(m, p, t) \cong T(m, 2,2)$.
Proof (by induction on m). If $m=5,6$ then the result follows immediately from Table 1, Figures 1 and 2 and the definition of Fibonacci numbers.

Let $m \geq 7$. Assume that for all $n<m$ holds $\sigma_{(A, 2 B)}(T(n, p, t)) \geq F_{n-1}+2 F_{n-3}$. We shall show that the theorem is true for m. Since $m \geq 7$, we have that at least one path of tripod $T(m, p, t)$ has length at least 3 . Without loss of generality we can assume that $m-p-t \geq 3$. Using Theorem 2.4 and the induction hypothesis we have

$$
\begin{aligned}
\sigma_{(A, 2 B)}(T(m, p, t)) & =\sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}(T(m-2, p, t)) \\
& \geq F_{m-2}+2 F_{m-4}+F_{m-3}+2 F_{m-5}=F_{m-1}+2 F_{m-3}
\end{aligned}
$$

and the theorem follows.
Now we shall show that $\sigma_{(A, 2 B)}(T(m, 2,2))=F_{m-1}+2 F_{m-3}$. By Theorem 2.1 and by the definition of Fibonacci numbers, we obtain

$$
\begin{aligned}
\sigma_{(A, 2 B)}(T(m, 2,2)) & =5 F_{m-4}+4 F_{m-5}=4 F_{m-3}+F_{m-4} \\
& =F_{m-2}+3 F_{m-3}=F_{m-1}+2 F_{m-3},
\end{aligned}
$$

which completes the proof.

3. MAIN RESULTS

In this section we determine the second smallest value of the parameter $\sigma_{(A, 2 B)}(T(m))$. We show that the tripod $T(m, 2,2)$ realizes this second minimum value of $\sigma_{(A, 2 B)}(T(m))$.

Let $r \geq 1, \Delta \geq 3$ be integers. For $m \geq 3$ by a tree $S_{r}(m, \Delta)$ we mean a graph with a unique branch vertex obtained from the star with maximum degree Δ by inserting new vertices of degree 2 into some edges of the star such that in the resulting tree $S_{r}(m, \Delta)$ the longest path starting from the branch vertex has length r. In particular, $S_{1}(m, \Delta)$ is isomorphic to a star $S(m)$ and $S_{r}(m, 3)$ is isomorphic to a tripod $T(m, r, t)$, for some $t \geq 1$.
Theorem 3.1. Let $m \geq 4, \Delta \geq 3$ be integers. Then

$$
\sigma_{(A, 2 B)}\left(S_{2}(m, \Delta)\right)=\left\{\begin{array}{l}
\sigma_{(A, 2 B)}(S(m-1))+\sigma_{(A, 2 B)}(S(m-2)), \\
\quad \text { if } S_{2}(m, \Delta) \text { has the unique } 2-\text { path } \\
\sigma_{(A, 2 B)}\left(S_{2}(m-1, \Delta)\right)+\sigma_{(A, 2 B)}\left(S_{2}(m-2, \Delta-1)\right), \\
\text { otherwise. }
\end{array}\right.
$$

Proof. Let $m \geq 4$ and $\Delta \geq 3$ be integers. Consider two cases.
Case 1. There exists a unique 2-path in the tree $S_{2}(m, \Delta)$.
Let $e \in E\left(S_{2}(m, \Delta)\right)$ be an edge which belongs to the 2 -path and e is incident with a leaf. We have two possibilities.
Case 1.1. $c(e)=A$.
Then $\sigma_{A(e)}\left(S_{2}(m, \Delta)\right)=\sigma_{(A, 2 B)}(S(m-1))$.
Case 1.2. $c(e)=2 B$.
Then $\sigma_{2 B(e)}\left(S_{2}(m, \Delta)\right)=\sigma_{(A, 2 B)}(S(m-2))$. Hence

$$
\sigma_{(A, 2 B)}\left(S_{2}(m, \Delta)\right)=\sigma_{(A, 2 B)}(S(m-1))+\sigma_{(A, 2 B)}(S(m-2))
$$

Case 2. There exist at least two 2-paths in the tree $S_{2}(m, \Delta)$.
Let $e \in E\left(S_{2}(m, \Delta)\right)$ be an edge which belongs to any 2-path and e is incident with a leaf. We have two possibilities.
Case 2.1. $c(e)=A$.
Then $\sigma_{A(e)}\left(S_{2}(m, \Delta)\right)=\sigma_{(A, 2 B)}\left(S_{2}(m-1, \Delta)\right)$.
Case 2.2. $c(e)=2 B$.
Then $\sigma_{2 B(e)}\left(S_{2}(m, \Delta)\right)=\sigma_{(A, 2 B)}\left(S_{2}(m-2, \Delta-1)\right)$. Hence

$$
\sigma_{(A, 2 B)}\left(S_{2}(m, \Delta)\right)=\sigma_{(A, 2 B)}\left(S_{2}(m-1, \Delta)\right)+\sigma_{(A, 2 B)}\left(S_{2}(m-2, \Delta-1)\right)
$$

which completes the proof.
Theorem 3.2. Let $m \geq 4, \Delta \geq 4, r \geq 1$ be integers. Then for an arbitrary tripod $T(m, p, t) \in \mathcal{T}$ holds

$$
\begin{equation*}
\sigma_{(A, 2 B)}\left(S_{r}(m, \Delta)\right)>\sigma_{(A, 2 B)}(T(m, p, t)) \tag{3.1}
\end{equation*}
$$

Proof. Let m, Δ, r be as in the statement of the theorem. We consider the following cases:
Case 1. There exists a unique r-path in the tree $S_{r}(m, \Delta)$.
Clearly $r \geq 2$ and $m \geq 5$. We use induction on m and r. If $m=5$ then $r=2$ and the result is obvious. Let $m \geq 6$ and $r \geq 2$ and assume that the inequality (3.1) holds for all $n<m$ and $k<r$. Let $e \in E\left(S_{r}(m, \Delta)\right)$ belongs to the r-path and e is incident with a leaf of $S_{r}(m, \Delta)$. We need to consider two cases.
Case 1.1. $c(e)=A$.
Then $\sigma_{A(e)}\left(S_{r}(m, \Delta)\right)=\sigma_{(A, 2 B)}\left(S_{r-1}(m-1, \Delta)\right)$.
Case 1.2. $c(e)=2 B$.
If $r=2$ then the unique 2-path P is coloured by $2 B$ and the graph $S_{2}(m, \Delta) \backslash P$ is isomorphic to a star $S(m-2)$. Hence $\sigma_{2 B(e)}\left(S_{2}(m, \Delta)\right)=\sigma_{(A, 2 B)}(S(m-2))$.
If $r \geq 3$ then the graph $S_{r}(m, \Delta) \backslash P$ is isomorphic to a graph $S_{k<r}(m-2, \Delta)$.
If $r=2$ then by the above and using the induction hypothesis we obtain

$$
\begin{aligned}
\sigma_{(A, 2 B)}\left(S_{2}(m, \Delta)\right) & =\sigma_{(A, 2 B)}\left(S_{1}(m-1, \Delta)\right)+\sigma_{(A, 2 B)}(S(m-2)) \\
& >\sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}(S(m-2))
\end{aligned}
$$

We shall show that for $T(m, p, t) \in \mathcal{T}$

$$
\sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}(S(m-2))>\sigma_{(A, 2 B)}(T(m, p, t)) .
$$

It suffices to prove the following inequality

$$
\sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}(S(m-2))-\sigma_{(A, 2 B)}(T(m, p, t))>0
$$

By Theorem 2.4, we have

$$
\begin{aligned}
& \sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}(S(m-2))-\sigma_{(A, 2 B)}(T(m-1, p, t)) \\
& \quad-\sigma_{(A, 2 B)}(T(m-2, p, t))>0
\end{aligned}
$$

because the star maximizes this parameter in trees.
If $r \geq 3$ then using the induction hypothesis we obtain

$$
\begin{aligned}
\sigma_{(A, 2 B)}\left(S_{r}(m, \Delta)\right) & =\sigma_{(A, 2 B)}\left(S_{r-1}(m-1, \Delta)\right)+\sigma_{(A, 2 B)}\left(S_{k<r}(m-2, \Delta)\right) \\
& >\sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}(T(m-2, p, t)) \\
& =\sigma_{(A, 2 B)}(T(m, p, t))
\end{aligned}
$$

which completes the proof of this case.
Case 2. There exist at least two r-paths in $S_{r}(m, \Delta)$.
For $r=1$ the result is obvious since $S_{1}(m, \Delta)$ is isomorphic to the star. Let $r \geq 2$. Then $m \geq 6$. We now proceed by induction on m. If $m=6$ then $r=2$ and the result is obvious.

Let $m \geq 7$ and assume that for all $n<m$ the inequality holds. We distinguish two possibilities.

Case 2.1. $c(e)=A$.
Then $\sigma_{A(e)}\left(S_{r}(m, \Delta)\right)=\sigma_{(A, 2 B)}\left(S_{r}(m-1, \Delta)\right)$.
Case 2.2. $c(e)=2 B$.
If $r=2$ then $S_{2}(m, \Delta) \backslash P$ is isomorphic to $S_{2}(m-2, \Delta-1)$. If $r \geq 3$ then $S_{2}(m, \Delta) \backslash P$ is isomorphic to $S_{2}(m-2, \Delta)$. Let $r=2$. Then from these possibilities and by the induction hypothesis we obtain

$$
\begin{aligned}
\sigma_{(A, 2 B)}\left(S_{2}(m, \Delta)\right) & =\sigma_{(A, 2 B)}\left(S_{2}(m-1, \Delta)\right)+\sigma_{(A, 2 B)}\left(S_{2}(m-2, \Delta-1)\right) \\
& >\sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}\left(S_{2}(m-2, \Delta-1)\right) .
\end{aligned}
$$

We shall show that

$$
\sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}\left(S_{2}(m-2, \Delta-1)\right)>\sigma_{(A, 2 B)}(T(m, p, t))
$$

for all $T(m, p, t) \in \mathcal{T}$. It suffices to prove that

$$
\sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}\left(S_{2}(m-2, \Delta-1)\right)-\sigma_{(A, 2 B)}(T(m, p, t))>0
$$

Suppose that there exist $l(l \geq 2)$ 2-paths in $S_{2}(m, \Delta)$. Then by (2.4) and applying the induction hypothesis in l steps we obtain

$$
\begin{aligned}
& \sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}\left(S_{2}(m-2, \Delta-1)\right) \\
& \quad-\sigma_{(A, 2 B)}(T(m-1, p, t))-\sigma_{(A, 2 B)}(T(m-2, p, t)) \\
& =\sigma_{(A, 2 B)}\left(S_{2}(m-2, \Delta-1)\right)-\sigma_{(A, 2 B)}(T(m-2, p, t))>0
\end{aligned}
$$

in the first step. Consequently in the lth step

$$
\sigma_{(A, 2 B)}\left(S_{2}(m-l-1, \Delta-l)\right)-\sigma_{(A, 2 B)}(T(m-l-1, p, t))>0
$$

since $S_{2}(m-l-1, \Delta-l)$ is isomorphic to the star $S(m-l-1)$ and the result immediately follows.

Let $r \geq 3$. Then from Cases 2.1 and 2.2 and using the induction hypothesis we obtain

$$
\begin{aligned}
\sigma_{(A, 2 B)}\left(S_{r}(m, \Delta)\right) & =\sigma_{(A, 2 B)}\left(S_{r}(m-1, \Delta)\right)+\sigma_{(A, 2 B)}\left(S_{r}(m-2, \Delta)\right) \\
& >\sigma_{(A, 2 B)}(T(m-1, p, t))+\sigma_{(A, 2 B)}(T(m-2, p, t)) \\
& =\sigma_{(A, 2 B)}(T(m, p, t))
\end{aligned}
$$

and the proof is complete.
Corollary 3.3. Let $m \geq 4, \Delta \geq 4, r \geq 1$ be integers. Then

$$
\sigma_{(A, 2 B)}\left(S_{r}(m, \Delta)\right)>F_{m-1}+2 F_{m-3}
$$

Proof. By Theorems 3.2 and 2.5, we immediately obtain

$$
\sigma_{(A, 2 B)}\left(S_{r}(m, \Delta)\right)>\sigma_{(A, 2 B)}(T(m, p, t)) \geq F_{m-1}+2 F_{m-3}
$$

Theorem 3.4. Let $T(m) \not \neq P(m)$ be a tree of the size m. Then

$$
\begin{equation*}
\sigma_{(A, 2 B)}(T(m)) \geq F_{m-1}+2 F_{m-3} \tag{3.2}
\end{equation*}
$$

Moreover, $\sigma_{(A, 2 B)}(T(m))=F_{m-1}+2 F_{m-3}$ if $T(m) \cong T(m, 2,2)$.
Proof. Assume that $T(m)$ is a tree of size m non-isomorphic to the path $P(m)$. Since $T(m) \neq P(m)$, there exists in $T(m)$ at least one branch vertex, say x. If $T(m)$ has a unique branch vertex then the result follows by Theorem 3.2. Suppose that $T(m)$ has at least two branch vertices and let $u, v \in V(T(m))$ be such vertices. Let $e \in E(T(m))$ be an edge belonging to the path $u-v$ in $T(m)$. Then $T(m)=T_{1}\left(m_{1}\right) \cup T_{2}\left(m_{2}\right) \cup\{e\}$, where $T_{i}\left(m_{i}\right)$ for $i=1,2$ are trees of the size $m_{i}, m_{i} \geq 2$. Applying Lemma 1.3 we obtain

$$
\begin{aligned}
\sigma_{(A, 2 B)}(T(m)) & =\sigma_{(A, 2 B)}\left(T_{1}\left(m_{1}\right) \cup T_{2}\left(m_{2}\right) \cup\{e\}\right) \\
& \geq \sigma_{(A, 2 B)}\left(T_{1}\left(m_{1}\right) \cup P\left(m_{2}\right) \cup\{e\}\right) .
\end{aligned}
$$

If $T_{1}\left(m_{1}\right) \cup P\left(m_{2}\right) \cup\{e\}$ is $S_{r}(m, \Delta)$, then by Theorem 3.2 the result follows. Otherwise, it has at least two branch vertices and we repeat the above procedure until we get a tree T^{*} of the same size m. By Theorem 3.2 we have $\sigma_{(A, 2 B)}\left(T^{*}\right)>\sigma_{(A, 2 B)}(T(m, p, t))$. In the class \mathcal{T} the minimum tripod $T(m, 2,2)$ has the parameter $\sigma_{(A, 2 B)}(T(m, 2,2))=$ $F_{m-1}+2 F_{m-3}$, which completes the proof.

REFERENCES

[1] U. Bednarz, I. Włoch, M. Wołowiec-Musiał, Total graph interpretation of numbers of the Fibonacci type, J. Appl. Math. 2015 (2015), Article ID 837917.
[2] C. Berge, Principle of Combinatorics, Academic Press, New York, London, 1971.
[3] R. Diestel, Graph Theory, Springer-Verlag, Heidelberg, New York, 2005.
[4] H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 1, 16-21.

Urszula Bednarz

ubednarz@prz.edu.pl
Rzeszow University of Technology
Faculty of Mathematics and Applied Physics
al. Powstańców Warszawy 12, 35-359 Rzeszów, Poland
Dorota Bród
dorotab@prz.edu.pl
Rzeszow University of Technology
Faculty of Mathematics and Applied Physics
al. Powstańców Warszawy 12, 35-359 Rzeszów, Poland

[^0]
[^0]: Anetta Szynal-Liana
 aszynal@prz.edu.pl
 Rzeszow University of Technology
 Faculty of Mathematics and Applied Physics
 al. Powstańców Warszawy 12, 35-359 Rzeszów, Poland
 Iwona Włoch
 iwloch@prz.edu.pl

 Rzeszow University of Technology
 Faculty of Mathematics and Applied Physics
 al. Powstańców Warszawy 12, 35-359 Rzeszów, Poland
 Małgorzata Wołowiec-Musiał
 wolowiec@prz.edu.pl
 Rzeszow University of Technology
 Faculty of Mathematics and Applied Physics
 al. Powstańców Warszawy 12, 35-359 Rzeszów, Poland
 Received: April 12, 2016.
 Revised: September 16, 2016.
 Accepted: September 16, 2016.

