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Abstract. In this paper we show the applications of the Fibonacci numbers in edge coloured
trees. We determine the second smallest number of all (A, 2B)-edge colourings in trees.
We characterize the minimum tree achieving this second smallest value.
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1. INTRODUCTION AND PRELIMINARY RESULTS

The n-th Fibonacci number Fn is defined recursively by the second order linear
recurrence relation of the form Fn = Fn−1 +Fn−2 for n ≥ 2 with the initial conditions
F0 = F1 = 1. Research on graph interpretations of the Fibonacci numbers were
initiated in 1982 by H. Prodinger and R.F. Tichy in [4]. They showed that the number
of all independent sets in n-vertex path is equal to Fn. This simple observation
triggered counting problems in graphs related to the Fibonacci numbers. In this paper
we consider a special parameter in edge coloured graph which allows to get another
graph interpretation of the Fibonacci numbers.

For concepts not defined here see [2,3]. Let G be a finite, undirected, simple graph
with the vertex set V (G) and the edge set E(G). The order (number of vertices) and
size (number of edges) of G are denoted by n and m, respectively. By P (m), T (m)
and S(m) we denote a path, a tree and a star of size m, respectively. Recall that in
a tree a vertex of degree at least 3 is a branch vertex, a vertex of degree 1 is a leaf.
A tripod is a tree with exactly three leaves. In other words, every tripod has a unique
branch vertex being the initial vertex of three elementary paths. Let m ≥ 3, p ≥ 1,
t ≥ 1 be integers. By T (m, p, t) we mean a tripod of size m with paths of lengths p, t
and m− p− t, starting from the branch vertex. These paths we will denote shortly:
p-path, t-path and (m− p− t)-path, respectively.
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We begin with a definition of (A, 2B)-edge colouring. Let G be a connected graph
and let C = {A,B} be a set of two colours. A graph G is (A, 2B)-edge coloured if for
every maximal (with respect to set inclusion) B-monochromatic subgraph H of G
there exists a partition of H into edge disjoint paths of length 2. We have no restriction
on the colour A, so (A, 2B)-edge colouring exists for an arbitrary graph G. It is worth
mentioning that the concept of (A, 2B)-edge colouring is a special case of edge shade
colouring of a graph (more details for edge shade colouring can be found in [1]).

Now, assume that F is a family of all distinct (A, 2B)-edge coloured graphs obtained
by colouring of G, i.e. F = {G(1), G(2), . . . , G(l)}, where l ≥ 1 and G(p) denotes a graph
obtained by (A, 2B)-edge colouring of the graph G for p = 1, 2, . . . l. Let θ(G(p)), where
1 ≤ p ≤ l, be the number of all partitions into edge disjoint paths of length 2 of
all B-monochromatic subgraphs of G(p). If G(p) is A-monochromatic then we put
θ(G(p)) = 1. Let us define a parameter σ(A,2B)(G) as follows:

σ(A,2B)(G) =
l∑

p=1
θ(G(p)).

The parameter σ(A,2B)(G) was studied for different classes of graphs (see [1]).
We recall the main result for trees.
Theorem 1.1 ([1]). Let T (m) be a tree of size m,m ≥ 1. Then

Fm ≤ σ(A,2B)(T (m)) ≤ 1 +
∑

j≥1

(
m

2j

) j−1∏

p=0
[2j − (2p+ 1)].

Moreover, σ(A,2B)(P (m)) = Fm and

σ(A,2B)(S(m)) = 1 +
∑

j≥1

(
m

2j

) j−1∏

p=0
[2j − (2p+ 1)].

From the above theorem follows that the graph P (m) is the extremal tree achieving
the minimum value of the parameter σ(A,2B)(T (m)) and the graph S(m) is the extremal
tree achieving the maximum value of the parameter σ(A,2B)(T (m)). It is natural to ask
what are extremal trees achieving the second smallest and the second largest value of
this parameter. In this paper we give the lower bound of the parameter σ(A,2B)(T (m))
with the restriction that T (m) 6∼= P (m) and we describe the extremal graph achieving
the second smallest value of the parameter σ(A,2B)(T (m)).

In the sequel we will use the following notation. If e ∈ E(G) is a fixed edge that is
coloured by the colour A then we will write c(e) = A. If e is coloured by the colour B
then we will write c(e) = 2B to indicate that there is an edge e′ adjacent to e and
coloured by the colour B. Moreover, we will write σA(e)(G) (resp. σ2B(e)(G)) to denote
the number of all (A, 2B)-edge colourings of G with c(e) = A (resp. c(e) = 2B).
The following lemmas give the basic rules for determining the parameter σ(A,2B)(G).
Lemma 1.2. Let e ∈ E(G) be a fixed edge. Then

σ(A,2B)(G) = σA(e)(G) + σ2B(e)(G). (1.1)
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Lemma 1.3. Let G = H ∪ T (l) ∪ {e} be a connected graph, where H is a connected
graph, T (l) is a tree of size l, l ≥ 1 and H and T (l) are vertex disjoint. Assume that
e = uv, where u ∈ V (H), v ∈ V (T (l)) and e is a bridge in G. Then

σ(A,2B)(G) ≥ σ(A,2B)(H ∪ P (l) ∪ {e}).

Moreover, the equality holds if T (l) ∼= P (l).

Proof. Let G = H ∪ T (l) ∪ {e} and e = uv ∈ E(G) with u ∈ V (H) and v ∈ V (T (l)).
We distinguish the following cases:
Case 1. c(e) = A.
Then σA(e)(G) = σ(A,2B)(H)σ(A,2B)(T (l)).
Case 2. c(e) = 2B.
Then there exists an edge, say e′ ∈ E(G), adjacent to the edge e, such that {e, e′}
belongs to a partition of 2B-monochromatic subgraph of G and c(e′) = 2B. Clearly,
either e′ ∈ E(H) or e′ ∈ E(T (l)). Hence

σ2B(e)(G) = σ2B(e)(H ∪ {e})σ(A,2B)(T (l)) + σ(A,2B)(H)σ2B(e)(T (l) ∪ {e}).

Consequently,

σ(A,2B)(G) = σ(A,2B)(H)σ(A,2B)(T (l)) + σ2B(e)(H ∪ {e})σ(A,2B)(T (l))
+ σ(A,2B)(H)σ2B(e)(T (l) ∪ {e}).

By Theorem 1.1, we have σ(A,2B)(T (l)) > σ(A,2B)(P (l)). Hence

σ(A,2B)(G) ≥ σ(A,2B)(H)σ(A,2B)(P (l)) + σ2B(e)(H ∪ {e})σ(A,2B)(P (l))
+ σ(A,2B)(H)σ2B(e)(P (l + 1)) = σ(A,2B)(H ∪ P (l) ∪ {e}),

which completes the proof.

2. EXTREMAL TRIPODS WITH RESPECT TO σ(A,2B)(T (m, p, t))

As it was mentioned earlier the path P (m) is the extremal graph achieving the minimum
value of the parameter σ(A,2B)(T (m)) in the class of trees of size m. Looking for the
second smallest value of the parameter σ(A,2B) in trees of sizem let us consider the class
of trees T (m) such that T (m) 6∼= P (m). This means that there exists at least one branch
vertex in T (m). We start with the class of tripods because results obtained for this class
will be crucial for the main result. Assume that T = {T (m, p, t);m ≥ 3, p ≥ 1, t ≥ 1}
is the family of tripods.

Theorem 2.1. Let m ≥ 3, p ≥ 1, t ≥ 1 be integers. Then for an arbitrary tripod
T (m, p, t) ∈ T holds

σ(A,2B)(T (m, p, t)) = Fp+tFm−t−p + Fm−t−p−1(Fp−1Ft + FpFt−1). (2.1)
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Proof. Let T (m, p, t) ∈ T . If m = 3 then p = t = 1 and by the simple observation we
have

σ(A,2B)(T (3, 1, 1)) = 4 = F2F1 + F0(F0F1 + F1F0).

Let m ≥ 4 and let x ∈ V (T (m, p, t)) be the unique branch vertex of a tripod.
Clearly p ≥ 2 or t ≥ 2 or m − p − t ≥ 2. Without loss of generality suppose that
m − p − t ≥ 2. Let e ∈ E(T (m, p, t)) be the edge incident with the vertex x and
e belongs to (m− p− t)-path of T (m, p, t).

Consider the following cases:
Case 1. c(e) = A.
Then edges adjacent to e are coloured by A or 2B. This means that we have exactly
Fp+tFm−t−p−1 distinct (A, 2B)-edge colourings with c(e) = A.
Case 2. c(e) = 2B.
Then there exists an edge, say e

′ ∈ E(T (m, p, t)), adjacent to e and coloured by
2B and {e, e′} belongs to a partition of 2B-monochromatic subgraph of T (m, p, t).
Clearly e

′ belongs to either p-path or t-path or (m − t − p)-path. Considering all
these possibilities we obtain Fp−1FtFm−t−p−1 + FpFt−1Fm−t−p−1 + Fp+tFm−t−p−2
(A, 2B)-edge colourings with c(e) = 2B.

Finally, by the above, by Lemma 1.2 and by simple calculations we obtain

σ(A,2B)(T (m, p, t)) = Fp+tFm−t−p−1 + Fp−1FtFm−t−p−1

+ Ft−1FpFm−t−p−1 + Fp+tFm−t−p−2

= Fp+tFm−t−p + Fm−t−p−1(Fp−1Ft + FpFt−1),

which ends the proof.

Corollary 2.2. Let m ≥ 3, t ≥ 1 be integers. Then
a) σ(A,2B)(T (m, 1, t)) = Ft+1Fm−t,
b) σ(A,2B)(T (m, 1, 1)) = 2Fm−1.

Proof. a) Applying (2.1) for p = 1 and using the definition of Fibonacci numbers we
have

σ(A,2B)(T (m, 1, t)) = Ft+1Fm−t−1 + Fm−t−2(Ft + Ft−1)
= Ft+1(Fm−t−1 + Fm−t−2) = Ft+1Fm−t.

b) Analogously by Theorem 2.1 for p = t = 1 we obtain

σ(A,2B)(T (m, 1, 1)) = F2Fm−2 + 2Fm−3 = 2Fm−1.

Using the above results we can give the maximum value of the parameter
σ(A,2B)(T (m, p, t)). We will need the following well-known identities:

Fm−1 = Fp+tFm−p−t−1 + Fp+t−1Fm−p−t−2, (2.2)
Fm+n = FmFn + Fm−1Fn−1. (2.3)
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Theorem 2.3. Let m ≥ 4, p ≥ 1, t ≥ 1 be integers. Then for an arbitrary tripod
T (m, p, t) ∈ T holds

σ(A,2B)(T (m, p, t)) ≤ 2Fm−1.

Moreover, σ(A,2B)(T (m, p, t)) = 2Fm−1 iff T (m, p, t) ∼= T (m, 1, 1).

Proof. It suffices to prove that

Fp+tFm−t−p + Fm−t−p−1(Fp−1Ft + FpFt−1)− 2Fm−1 ≤ 0.

Applying (2.2) and the definition of Fibonacci numbers we have

Fp+tFm−t−p + Fm−t−p−1(Fp−1Ft + FpFt−1)− 2Fp+tFm−t−p−1 − 2Ft+p−1Fm−t−p−2

= Fp+tFm−t−p−1 + Fp+tFm−t−p−2 + Fm−t−p−1(Fp−1Ft + FpFt−1)
− 2Fp+tFm−t−p−1 − 2Ft+p−1Fm−t−p−2

= Fm−t−p−1(Fp+t + Fp−1Ft + FpFt−1 − 2Fp+t) + Fm−t−p−2(Fp+t − 2Fp+t−1).

By (2.3), we obtain

Fm−t−p−1(Fp−1Ft + FpFt−1 − FpFt − Fp−1Ft−1)
+ Fm−t−p−2(Fp+t−1 + Fp+t−2 − 2Fp+t−1)

= Fm−t−p−1(Ft(Fp−1 − Fp)− Ft−1(Fp−1 − Fp)) + Fm−t−p−2(Fp+t−2 − Fp+t−1)
= Fm−t−p−1(Fp−1 − Fp)(Ft − Ft−1) + Fm−t−p−2(Fp+t−2 − Fp+t−1) ≤ 0

by Fp−1 ≤ Fp and Fp+t−2 ≤ Fp+t−1.
Moreover, the equality holds if and only if Fp+t−2 = Fp+t−1 and Fp−1 = Fp or

Fp+t−2 = Fp+t−1 and Ft = Ft−1. Clearly, Fp+t−2 = Fp+t−1 only for p+ t− 2 = 0 and
p+ t− 1 = 1. Hence p+ t = 2, so p = t = 1. Consequently, Fp−1 = Fp and Ft = Ft−1,
which immediately gives that the extremal tripod achieving the maximum value of
the parameter σ(A,2B)(T (m, p, t)) is only the tripod T (m, 1, 1).

Now we give the recurrence rule for determining the parameter σ(A,2B)(T (m, p, t)).

Theorem 2.4. Let m ≥ 3, p ≥ 1, t ≥ 1 be integers. Then for an arbitrary tripod
T (m, p, t) ∈ T and m− p− t ≥ 3 holds

σ(A,2B)(T (m, p, t)) = σ(A,2B)(T (m− 1, p, t)) + σ(A,2B)(T (m− 2, p, t)) (2.4)

with initial conditions
σ(A,2B)(T (p+t+1, p, t)) = Fp+1Ft+1 and σ(A,2B)(T (p+t+2, p, t)) = Fp+1Ft+1 +Fp+t.

Proof. Let T (m, p, t) ∈ T . If m = p+ t+ 1 then (m− p− t)-path has length 1. Let
e ∈ E(T (p+ t+ 1, p, t)) be the unique edge of the (m− p− t)-path. We distinguish
the following cases.
Case 1. c(e) = A.
Then edges adjacent to e are coloured by A or 2B. This means that T (p+t+1, p, t)\e ∼=
P (p+ t) and, by Theorem 1.1, σA(e)(T (p+ t+ 1, p, t)) = Fp+t.
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Case 2. c(e) = 2B.
Then there exists an edge e′ ∈ E(T (p+t+1, p, t)\e) adjacent to e such that c(e′) = 2B.
Clearly e′ belongs to either p-path or t-path, by m = p+ t+ 1. Considering these two
possibilities we obtain that σ2B(e)(T (p+ t+ 1, p, t)) = Fp−1Ft + FpFt−1.

Consequently, by (2.3), we have

σ(A,2B)(T (p+ t+ 1, p, t)) = Fp+t + Fp−1Ft + FpFt−1

= FpFt + Fp−1Ft−1 + Fp−1Ft + FpFt−1

= Ft(Fp + Fp−1) + Ft−1(Fp + Fp−1)
= Ft+1Fp+1.

If m = p+ t+ 2 then, with respect to an edge e ∈ E(T (m+ p+ t+ 2, p, t)) belonging
to the (m− p− t)-path and incident with a leaf, we obtain

σ(A,2B)(T (p+ t+ 2, p, t)) = Fp+t + σ(A,2B)(T (p+ t+ 1, p, t))
= Fp+t + Ft+1Fp+1.

Assume now m− p− t ≥ 3. Let e ∈ E(T (m, p, t)) be an edge of the (m− p− t)-path
incident with a leaf. By analogy we obtain

σ(A,2B)(T (m, p, t)) = σ(A,2B)(T (m− 1, p, t)) + σ(A,2B)(T (m− 2, p, t)),

which completes the proof.

Solving the recurrence relation (2.4) we obtain the Binet formulas for the parameters
σ(A,2B)(T (m, 1, 1)) and σ(A,2B)(T (m, 2, 2)).

σ(A,2B)(T (m, 1, 1)) = 2
√

5
5

[(
1 +
√

5
2

)m

−
(

1−
√

5
2

)m
]

for m ≥ 3,

σ(A,2B)(T (m, 2, 2)) =
(

4
√

5
5 − 1

)(
1 +
√

5
2

)m

−
(

4
√

5
5 + 1

)(
1−
√

5
2

)m

for m ≥ 5.

We shall show that T (m, 2, 2) is the extremal tripod achieving the minimum value
of the parameter σ(A,2B)(T (m, p, t)) in the class T . Consider non-isomorphic tripods
of size m = 5, 6 (Figs 1 and 2).
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Fig 1. All non-isomorphic tripods of size 5

r r r r rr

Fig 2. All non-isomorphic tripods of size 6

For these tripods values of the parameter σ(A,2B)(T (m, p, t)) are given in Table 1.

Table 1.
T (m, p, t) T (5, 2, 2) T (5, 3, 1) T (6, 2, 2) T (6, 3, 2) T (6, 4, 1)
σ(A,2B)(T (m, p, t)) 9 10 14 15 16

Theorem 2.5. Let m ≥ 5, p ≥ 1, t ≥ 1 be integers. Then for an arbitrary tripod
T (m, p, t) ∈ T holds

σ(A,2B)(T (m, p, t)) ≥ Fm−1 + 2Fm−3.

Moreover, the equality holds if T (m, p, t) ∼= T (m, 2, 2).
Proof (by induction on m). If m = 5, 6 then the result follows immediately from
Table 1, Figures 1 and 2 and the definition of Fibonacci numbers.

Let m ≥ 7. Assume that for all n < m holds σ(A,2B)(T (n, p, t)) ≥ Fn−1 + 2Fn−3.
We shall show that the theorem is true for m. Since m ≥ 7, we have that at least
one path of tripod T (m, p, t) has length at least 3. Without loss of generality we can
assume that m− p− t ≥ 3. Using Theorem 2.4 and the induction hypothesis we have

σ(A,2B)(T (m, p, t)) = σ(A,2B)(T (m− 1, p, t)) + σ(A,2B)(T (m− 2, p, t))
≥ Fm−2 + 2Fm−4 + Fm−3 + 2Fm−5 = Fm−1 + 2Fm−3

and the theorem follows.
Now we shall show that σ(A,2B)(T (m, 2, 2)) = Fm−1 + 2Fm−3. By Theorem 2.1

and by the definition of Fibonacci numbers, we obtain

σ(A,2B)(T (m, 2, 2)) = 5Fm−4 + 4Fm−5 = 4Fm−3 + Fm−4

= Fm−2 + 3Fm−3 = Fm−1 + 2Fm−3,

which completes the proof.



486 U. Bednarz, D. Bród, A. Szynal-Liana, I. Włoch, and M. Wołowiec-Musiał

3. MAIN RESULTS

In this section we determine the second smallest value of the parameter σ(A,2B)(T (m)).
We show that the tripod T (m, 2, 2) realizes this second minimum value of
σ(A,2B)(T (m)).

Let r ≥ 1,∆ ≥ 3 be integers. For m ≥ 3 by a tree Sr(m,∆) we mean a graph with
a unique branch vertex obtained from the star with maximum degree ∆ by inserting
new vertices of degree 2 into some edges of the star such that in the resulting tree
Sr(m,∆) the longest path starting from the branch vertex has length r. In particular,
S1(m,∆) is isomorphic to a star S(m) and Sr(m, 3) is isomorphic to a tripod T (m, r, t),
for some t ≥ 1.
Theorem 3.1. Let m ≥ 4, ∆ ≥ 3 be integers. Then

σ(A,2B) (S2(m,∆)) =





σ(A,2B)(S(m− 1)) + σ(A,2B)(S(m− 2)),
if S2(m,∆) has the unique 2− path,

σ(A,2B)(S2(m− 1,∆)) + σ(A,2B)(S2(m− 2,∆− 1)),
otherwise.

Proof. Let m ≥ 4 and ∆ ≥ 3 be integers. Consider two cases.
Case 1. There exists a unique 2-path in the tree S2(m,∆).
Let e ∈ E(S2(m,∆)) be an edge which belongs to the 2-path and e is incident with
a leaf. We have two possibilities.
Case 1.1. c(e) = A.
Then σA(e) (S2(m,∆)) = σ(A,2B)(S(m− 1)).
Case 1.2. c(e) = 2B.
Then σ2B(e) (S2(m,∆)) = σ(A,2B)(S(m− 2)). Hence

σ(A,2B) (S2(m,∆)) = σ(A,2B)(S(m− 1)) + σ(A,2B)(S(m− 2)).

Case 2. There exist at least two 2-paths in the tree S2(m,∆).
Let e ∈ E(S2(m,∆)) be an edge which belongs to any 2-path and e is incident with
a leaf. We have two possibilities.
Case 2.1. c(e) = A.
Then σA(e) (S2(m,∆)) = σ(A,2B)(S2(m− 1,∆)).
Case 2.2. c(e) = 2B.
Then σ2B(e) (S2(m,∆)) = σ(A,2B)(S2(m− 2,∆− 1)). Hence

σ(A,2B) (S2(m,∆)) = σ(A,2B)(S2(m− 1,∆)) + σ(A,2B)(S2(m− 2,∆− 1)),

which completes the proof.

Theorem 3.2. Let m ≥ 4, ∆ ≥ 4, r ≥ 1 be integers. Then for an arbitrary tripod
T (m, p, t) ∈ T holds

σ(A,2B) (Sr(m,∆)) > σ(A,2B) (T (m, p, t)) . (3.1)
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Proof. Let m, ∆, r be as in the statement of the theorem. We consider the following
cases:
Case 1. There exists a unique r-path in the tree Sr(m,∆).
Clearly r ≥ 2 and m ≥ 5. We use induction on m and r. If m = 5 then r = 2 and the
result is obvious. Let m ≥ 6 and r ≥ 2 and assume that the inequality (3.1) holds for
all n < m and k < r. Let e ∈ E(Sr(m,∆)) belongs to the r-path and e is incident
with a leaf of Sr(m,∆). We need to consider two cases.
Case 1.1. c(e) = A.
Then σA(e) (Sr(m,∆)) = σ(A,2B) (Sr−1(m− 1,∆)).
Case 1.2. c(e) = 2B.
If r = 2 then the unique 2-path P is coloured by 2B and the graph S2 (m,∆) \ P is
isomorphic to a star S(m− 2). Hence σ2B(e) (S2(m,∆)) = σ(A,2B) (S(m− 2)).
If r ≥ 3 then the graph Sr (m,∆) \ P is isomorphic to a graph Sk<r (m− 2,∆) .
If r = 2 then by the above and using the induction hypothesis we obtain

σ(A,2B) (S2(m,∆)) = σ(A,2B) (S1(m− 1,∆)) + σ(A,2B) (S(m− 2))
> σ(A,2B) (T (m− 1, p, t)) + σ(A,2B) (S(m− 2)) .

We shall show that for T (m, p, t) ∈ T

σ(A,2B) (T (m− 1, p, t)) + σ(A,2B) (S(m− 2)) > σ(A,2B) (T (m, p, t)) .

It suffices to prove the following inequality

σ(A,2B) (T (m− 1, p, t)) + σ(A,2B) (S(m− 2))− σ(A,2B) (T (m, p, t)) > 0.

By Theorem 2.4, we have

σ(A,2B) (T (m− 1, p, t)) + σ(A,2B) (S(m− 2))− σ(A,2B) (T (m− 1, p, t))
− σ(A,2B) (T (m− 2, p, t)) > 0

because the star maximizes this parameter in trees.
If r ≥ 3 then using the induction hypothesis we obtain

σ(A,2B) (Sr(m,∆)) = σ(A,2B) (Sr−1(m− 1,∆)) + σ(A,2B) (Sk<r(m− 2,∆))
> σ(A,2B) (T (m− 1, p, t)) + σ(A,2B) (T (m− 2, p, t))
= σ(A,2B) (T (m, p, t)) ,

which completes the proof of this case.
Case 2. There exist at least two r-paths in Sr (m,∆).

For r = 1 the result is obvious since S1 (m,∆) is isomorphic to the star. Let r ≥ 2.
Then m ≥ 6. We now proceed by induction on m. If m = 6 then r = 2 and the result
is obvious.

Let m ≥ 7 and assume that for all n < m the inequality holds. We distinguish two
possibilities.
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Case 2.1. c(e) = A.
Then σA(e)(Sr(m,∆)) = σ(A,2B) (Sr(m− 1,∆)).
Case 2.2. c(e) = 2B.
If r = 2 then S2 (m,∆) \ P is isomorphic to S2 (m− 2,∆− 1) . If r ≥ 3 then
S2 (m,∆) \ P is isomorphic to S2 (m− 2,∆). Let r = 2. Then from these possibilities
and by the induction hypothesis we obtain

σ(A,2B) (S2(m,∆)) = σ(A,2B) (S2(m− 1,∆)) + σ(A,2B) (S2(m− 2,∆− 1))
> σ(A,2B) (T (m− 1, p, t)) + σ(A,2B) (S2(m− 2,∆− 1)) .

We shall show that

σ(A,2B) (T (m− 1, p, t)) + σ(A,2B) (S2(m− 2,∆− 1)) > σ(A,2B) (T (m, p, t))

for all T (m, p, t) ∈ T . It suffices to prove that

σ(A,2B) (T (m− 1, p, t)) + σ(A,2B) (S2(m− 2,∆− 1))− σ(A,2B) (T (m, p, t)) > 0.

Suppose that there exist l (l ≥ 2) 2-paths in S2 (m,∆) . Then by (2.4) and applying
the induction hypothesis in l steps we obtain

σ(A,2B) (T (m− 1, p, t)) + σ(A,2B) (S2(m− 2,∆− 1))
− σ(A,2B) (T (m− 1, p, t))− σ(A,2B) (T (m− 2, p, t))

= σ(A,2B) (S2(m− 2,∆− 1))− σ(A,2B) (T (m− 2, p, t)) > 0

in the first step. Consequently in the lth step

σ(A,2B) (S2(m− l − 1,∆− l))− σ(A,2B) (T (m− l − 1, p, t)) > 0

since S2 (m− l − 1,∆− l) is isomorphic to the star S(m − l − 1) and the result
immediately follows.

Let r ≥ 3. Then from Cases 2.1 and 2.2 and using the induction hypothesis we
obtain

σ(A,2B) (Sr(m,∆)) = σ(A,2B) (Sr(m− 1,∆)) + σ(A,2B) (Sr(m− 2,∆))
> σ(A,2B) (T (m− 1, p, t)) + σ(A,2B) (T (m− 2, p, t))
= σ(A,2B) (T (m, p, t)) ,

and the proof is complete.

Corollary 3.3. Let m ≥ 4, ∆ ≥ 4, r ≥ 1 be integers. Then

σ(A,2B) (Sr(m,∆)) > Fm−1 + 2Fm−3.

Proof. By Theorems 3.2 and 2.5, we immediately obtain

σ(A,2B) (Sr(m,∆)) > σ(A,2B) (T (m, p, t)) ≥ Fm−1 + 2Fm−3.
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Theorem 3.4. Let T (m) 6∼= P (m) be a tree of the size m. Then

σ(A,2B) (T (m)) ≥ Fm−1 + 2Fm−3. (3.2)

Moreover, σ(A,2B) (T (m)) = Fm−1 + 2Fm−3 if T (m) ∼= T (m, 2, 2).
Proof. Assume that T (m) is a tree of size m non-isomorphic to the path P (m). Since
T (m) 6∼= P (m), there exists in T (m) at least one branch vertex, say x. If T (m) has
a unique branch vertex then the result follows by Theorem 3.2. Suppose that T (m) has
at least two branch vertices and let u, v ∈ V (T (m)) be such vertices. Let e ∈ E(T (m))
be an edge belonging to the path u− v in T (m). Then T (m) = T1(m1)∪T2(m2)∪{e},
where Ti(mi) for i = 1, 2 are trees of the size mi, mi ≥ 2. Applying Lemma 1.3 we
obtain

σ(A,2B) (T (m)) = σ(A,2B)(T1(m1) ∪ T2(m2) ∪ {e})
≥ σ(A,2B)(T1(m1) ∪ P (m2) ∪ {e}).

If T1(m1)∪P (m2)∪{e} is Sr(m,∆), then by Theorem 3.2 the result follows. Otherwise,
it has at least two branch vertices and we repeat the above procedure until we get a tree
T ∗ of the same size m. By Theorem 3.2 we have σ(A,2B)(T ∗) > σ(A,2B)(T (m, p, t)). In
the class T the minimum tripod T (m, 2, 2) has the parameter σ(A,2B) (T (m, 2, 2)) =
Fm−1 + 2Fm−3, which completes the proof.
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