Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To clarify the effect of copper powder morphology on the microstructure and properties of copper matrix bulk composites reinforced with Ni-doped graphene, spherical and dendritic copper powders were selected to fabricate the Ni-doped graphene reinforced copper matrix bulk composites. The Ni-doped graphene were synthesized by hydrothermal reduction method, followed by mixing with copper powders, and then consolidated by spark plasma sintering. It is found that the Ni-doped graphene are well bonded with the dendritic copper powder, whereas Ni-doped graphene are relatively independent on the spherical copper powder. The copper base bulk composite prepared by the dendritic copper powder has better properties than that prepared by spherical copper powder. At 0.5wt.% Ni-doped graphene, the dendritic copper base bulk composite has a good combination of hardness, electrical conductivity and yield strength, which are 81.62 HV, 87.93% IACS and 164 MPa, respectively.
Wydawca
Czasopismo
Rocznik
Tom
Strony
341--348
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab., wzory
Twórcy
autor
- Xi’an University of Technology, School of Materials Science and Engineering, Xi’an 710048, P.R. China
autor
- Xi’an University of Technology, School of Materials Science and Engineering, Xi’an 710048, P.R. China
autor
- Xi’an Polytechnic University, School of Materials Science and Engineering, Xi’an 710048, P.R. China
autor
- Xi’an University of Technology, School of Materials Science and Engineering, Xi’an 710048, P.R. China
autor
- Xi’an University of Technology, School of Materials Science and Engineering, Xi’an 710048, P.R. China
autor
- Xi’an University of Technology, School of Materials Science and Engineering, Xi’an 710048, P.R. China
Bibliografia
- [1] Y.H. Liang, Z.W. Han, X.J. Li, Z.H. Zhang, L.Q. Ren, Mater. Chem. Phys. 137 (1), 200-206 (2012). DOI: https://doi.org/10.1016/j.matchemphys.2012.09.007
- [2] X.L. Wang, Y.P. Wang, Y. Su, Z.G. Qu, Ceram. Int. 45 (12), 14889-14895 (2019). DOI: https://doi.org/10.1016/j.ceramint.2019.04.222
- [3] N. Sadeghi, M.R. Akbarpour, H. Aghajani, Mater. Sci. Eng. A 734, 164-170 (2018). DOI: https://doi.org/10.1016/j.msea.2018.07.101
- [4] H.J. Cho, D. Yan, J. Tam, U. Erb, J. Alloy Compd. 791, 1128-1137 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.03.347
- [5] Q. Zhang, Y. Liu, T. Liao, C.L. Zhang, X.L. Wu, Y.S. Liu, M.S. Qurashi, F. Zheng, Q.S. Song, P. Han, Mater. Chem. Phys. 231, 188-195 (2019). DOI: https://doi.org/10.1016/j.matchemphys.2018.12.026
- [6] W. Zeng, X.M. Tao, S.P. Lin, C. Lee, D.L. Shi, K.H. Lam, B.L Huang, Q.M. Wang, Y. Zhao, Nano Energy 54, 163-174 (2018). DOI: https://doi.org/10.1016/j.nanoen.2018.10.015
- [7] L. Chu, J.J. Shi, R. Braun, Physica E 110, 115-122 (2019). DOI: https://doi.org/10.1016/j.physe.2019.01.023
- [8] F. Lin, Y. Xiang, H.S. Shen, Compos. Part B 111, 261-269 (2017). DOI: https://doi.org/10.1016/j.compositesb.2016.12.004
- [9] J. Wei, C. Luo, H. Li, W. Lv, J.C. Liang, Y.Q. Deng, Z.J. Huang, C. Wang, F.Y. Kang, Q.H. Yang, Carbon 149, 492-498 (2019). DOI: https://doi.org/10.1016/j.carbon.2019.04.071
- [10] C. Salvo, R.V. Mangalaraja, R. Udayabashkar, M. Lopez, C. Aguilar, J. Alloy Compd. 777, 309-316 (2019). DOI: https://doi.org/10.1016/j.jallcom.2018.10.357
- [11] S. Dastjerdi, B. Akgöz, L. Yazdanparast, Compos. Part B 150, 124-134 (2018). DOI: https://doi.org/10.1016/j.compositesb.2018.05.059
- [12] J. Wang, L.N. Guo, W.M. Lin, J. Chen, S. Zhang, S.D. Chen, T.T. Zhen, Y.Y. Zhang, New Carbon Mater. 34 (2), 161-169 (2019). DOI: https://doi.org/10.1016/S1872-5805(19)60009-0 348
- [13] C. Ayyappadas, A. Muthuchamy, A.R. Annamalai, D.K. Agrawal, Adv. Powder Technol. 28 (7), 1760-1768 (2017). DOI: https://doi.org/10.1016/j.apt.2017.04.013
- [14] K. Fu, X. Zhang, C.S. Shi, E.Z. Liu, F. He, J.J. Li, N.Q. Zhao, Mater. Sci. Eng. A 715, 108-116 (2018). DOI: https://doi.org/10.1016/j.msea.2017.12.101
- [15] Z. Cao, X.D. Wang, J.L. Li, Y. Wu, H.P. Zhang, J.Q. Guo, S.Q.Wang, J. Alloy Compd. 696, 498-502 (2017). DOI: https://doi.org/10.1016/j.jallcom.2016.11.302
- [16] C.T. Hsieh, Y.F. Chen, C.E. Lee, Y.M. Chiang, K.Y. Hsieh, H.S. Wu, Mater. Chem. Phys. 197, 105-112 (2017). DOI: https://doi.org/10.1016/j.matchemphys.2017.05.012
- [17] S. Perumal, H.M. Lee, I.W. Cheong, J. Colloid Interf. Sci. 497, 359-367 (2017). DOI: https://doi.org/10.1016/j.jcis.2017.03.027
- [18] K.K.H.D. Silva, H.H. Huang, M. Yoshimura, Appl. Surf. Sci. 447, 338-346 (2018). DOI: https://doi.org/10.1016/j.apsusc.2018.03.243
- [19] P.H. Manrique, X.Z. Lei, R.Y. Xu, M.Y. Zhou, I.A. Kinloch, R.J. Young, J. Mater. Sci. 54, 12236-12289 (2019). DOI: https://doi.org/10.1007/s10853-019-03703-5
- [20] H.Y. Yue, L.H. Yao, X. Gao, S.L. Zhang, E.J. Guo, H. Zhang, X.Y. Lin, B. Wang, J. Alloy Compd. 691, 755-762 (2017). DOI: https://doi.org/10.1016/j.jallcom.2016.08.303
- [21] D.D. Zhang, Z.J. Zhan, J. Alloy Compd. 654, 226-233 (2016). DOI: https://doi.org/10.1016/j.jallcom.2015.09.013
- [22] K. Zhang, G.S. Shao, X.H. Chen, W. Li, F.C. Ma, P. Liu, Mater. Lett. 252, 338-341 (2019). DOI: https://doi.org/10.1016/j.matlet.2019.06.018
- [23] W. Ye, Q.Q. Chi, H. Zhou, P. Gao, Int. J. Hydrogen Energy 43 (41), 19164-19173 (2018). DOI: https://doi.org/10.1016/j.ijhydene.2018.08.166
- [24] G.S. Shao, P. Liu, K. Zhang, W. Li, X.H. Chen, F.C. Ma, Mater. Sci. Eng. A. 739, 329-334 (2019). DOI: https://doi.org/10.1016/j.msea.2018.10.067
- [25] F. Nazeer, Z. Ma, L.H. Gao, M.A. Khan, A. Malik, F.C. Wang, H.Z. Li, Results Phys. 14, 102432 (2019). DOI: https://doi.org/10.1016/j.rinp.2019.102432
- [26] J. Hwang, T. Yoon, S.H. Jin, J. Lee, T. Kim, S.H. Hong, S. Jeon, Adv. Mater. 25 (46), 6724-6729 (2013). DOI: https://doi.org/10.1002/adma.201302495
- [27] L.D. Wang, Y. Cui, B. Li, S. Yang, R.Y. Li, Z. Liu, R. Vajtai, W.D. Fei, RSC Adv. 5 (63), 51193-51200 (2015). DOI: https://doi.org/10.1039/C5RA04782J
- [28] X. Gao, H.Y. Yue, E.J. Guo, H. Zhang, X.Y. Lin, L.H. Yao, B. Wang, Powder Technol. 301, 601-607 (2016). DOI: https://doi.org/10.1016/j.powtec.2016.06.045
- [29] H.B. Luo, Y.W. Sui, J.Q. Qi, Q.K. Meng, F.X. Wei, Y.Z. He, J. Alloy Compd. 729, 293-302 (2017). DOI: https://doi.org/10.1016/j.jallcom.2017.09.102
- [30] D.D. Zhang, Z.J. Zhan, J. Alloy Compd. 658, 663-671 (2016). DOI: https://doi.org/10.1016/j.jallcom.2015.10.252
- [31] Y.J. Mai, F.X. Chen, W.Q. Lian, L.Y. Zhang, C.S. Liu, X.H. Jie, J. Alloy Compd. 756, 1-7 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.05.019
- [32] Y.X. Tang, X.M. Yang, R.R. Wang, M.X. Li, Mater. Sci. Eng. A. 599, 247-254 (2014). DOI: https://doi.org/10.1016/j.msea.2014.01.061
- [33] X.S. Li, Y.B. Zhao, W. Wu, J.F. Chen, G.W. Chu, H.K. Zou, J. Ind. Eng. Chem. 20 (4), 2043-2049 (2014). DOI: https://doi.org/10.1016/j.jiec.2013.09.029
- [34] J. Chen, Y. Zhang, M. Zhang, B.W. Yao, Y.R. Li, L. Huang, C. Li, G.Q. Shi, Chem. Sci. 7 (3), 1874-1881 (2016). DOI: https://doi.org/10.1039/C5SC03828F
- [35] S. Thakur, N. Karak, Carbon 50 (14), 5331-5339 (2012). DOI: https://doi.org/10.1016/j.carbon.2012.07.023
- [36] L. Jiang, G.L. Fan, Z.Q. Li, X.Z. Kai, D. Zhang, Z.X. Chen, S. Humphries, G. Heness, W.Y. Yeung, Carbon 49 (6), 1965-1971 (2011). DOI: https://doi.org/10.1016/j.carbon.2011.01.021
- [37] S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, Z.M. Lin, Mater. Sci. Eng. A. 612, 440-444 (2014). DOI: https://doi.org/10.1016/j.msea.2014.06.077
- [38] H.P. Zhang, C. Xu, W.L. Xiao, K. Ameyama, C.L. Ma, Mater. Sci. Eng. A. 658, 8-15 (2016). DOI: https://doi.org/10.1016/j.msea.2016.01.076
Uwagi
1. This research was supported by the National Natural Science Foundation of China (No. 51971173).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad244371-1f86-48e2-87e1-b5189fe09f06