CZASOPISMO INŻYNIERII LĄDOWEJ, ŚRODOWISKA I ARCHITEKTURY JOURNAL OF CIVIL ENGINEERING, ENVIRONMENT AND ARCHITECTURE

JCEEA, t. XXXIV, z. 64 (3/I/17), lipiec-wrzesień 2017, s. 535-546, DOI: 10.7862/rb.2017.144

Krzysztof WILDE¹ Kazimierz JAMROZ² Marcin BUDZYŃSKI³ Dawid BRUSKI⁴ Stanisław BURZYŃSKI⁵ Jacek CHRÓŚCIELEWSKI⁶ Łukasz PACHOCKI⁷ Wojciech WITKOWSKI⁸

SYMULACJE NUMERYCZNE STALOWEJ BARIERY OCHRONNEJ NA ŁUKU DROGI

W pracy wymieniono pewne czynniki związane z bezpieczeństwem ruchu drogowego, wskazując łuki poziome dróg jako miejsca, gdzie występuje istotna liczba groźnych w skutkach wypadków. W części pracy obejmującej symulacje numeryczne, zrealizowano serię badań spełniających warunki testu zderzeniowego TB11 ze zmiennym promieniem bariery. Oszacowano wpływ zróżnicowania geometrii na parametry bezpieczeństwa.

Słowa kluczowe: urządzenia BRD, ruch drogowy, bezpieczeństwo ruchu drogowego, badania numeryczne, zderzenia pojazdów, łuki poziome drogi, metoda elementów skończonych

1. Problem bezpieczeństwa w ruchu drogowym na łukach poziomych

W ostatnich dziesięciu latach w Polsce, w wypadkach drogowych śmierć poniosło blisko 65 tys. osób, a ponad 700 tys. zostało rannych. Każdego roku ofiarami wypadków staje się ponad 70 tys. uczestników ruchu drogowego.

¹ Autor do korespondencji / corresponding author: Krzysztof Wilde, Politechnika Gdańska, ul. Narutowicza 11/12 80-233 Gdańsk, +48583471891, krzysztof.wilde@wilis.pg.gda.pl

² Kazimierz Jamroz, Politechnika Gdańska

³ Dawid Bruski, Politechnika Gdańska

⁴ Marcin Budzyński, Politechnika Gdańska

⁵ Stanisław Burzyński, Politechnika Gdańska

⁶ Jacek Chróścielewski, Politechnika Gdańska

⁷ Łukasz Pachocki, Politechnika Gdańska

⁸ Wojciech Witkowski, Politechnika Gdańska

Eksperci Banku Światowego szacują, że Polska każdego roku traci 2,7% PKB z tytułu wypadków drogowych. W ostatnich latach, mimo zauważalnego spadku liczby ofiar śmiertelnych, nadal jest to ok. 3 tys. zabitych w wypadkach na całej sieci dróg. Wskaźnik demograficzny (liczba ofiar śmiertelnych w przeliczeniu na liczbę mieszkańców) na poziomie 10, sytuuje nasz kraj pod koniec rankingu krajów UE.

Czynników decydujących o występowaniu wypadków drogowych, a szczególnie ich ciężkości, jest wiele i można je pogrupować w systemie: człowiek, pojazd, droga i otoczenie. Dla lepszego zrozumienia i rozpoznania czynników drogowych mających wpływ na powstawanie wypadków konieczna jest budowa modeli miar bezpieczeństwa ruchu drogowego (brd). Takimi miarami mogą być: liczba wypadków, liczba ofiar, gęstość wypadków lub gęstość ofiar.

Budowa modeli miar brd wymaga zebrania wiarogodnych danych dotyczących z jednej strony statystyk wypadków i ich ofiar a z drugiej drogi i jej otoczenia oraz ruchu drogowego. Dużym problemem jest zebranie danych opisujących czynniki drogowe, szczególnie tych dotyczących parametrów geometrycznych drogi. Do takich danych można zaliczyć szerokość jezdni, parametry łuków poziomych i krętości drogi, parametry profilu (pochylenia, falistość). Dodatkowo będą to dane związane z otoczeniem dróg np. odległością przeszkód bocznych oraz wyposażeniem, szczególnie jeżeli chodzi o urządzenia brd – bariery, osłony energochłonne, terminale.

W modelach budowanych w Polsce brakuje przede wszystkim parametrów dotyczących łuków poziomych, pochyleń podłużnych oraz wyposażenia dróg, jako czynników mogących wpływać w znaczny sposób na miary brd. Znaczna część opisywanych modeli zawiera zmienne, w których ukryte są parametry geometryczne drogi, ale nie ma wskazanego ich konkretnego wpływu na brd.

Liczne pozycje literatury wskazują na bezpośredni wpływ parametrów geometrii planu, profilu i wyposażenia drogi na poziom brd, do tej pory ze względu na trudność w uzyskaniu takich danych, nie są one w pełni wykorzystane w polskich modelach brd. Biorąc pod uwagę, że na łukach poziomych doszło w ostatnich 10 latach do ok. 10% wszystkich wypadków drogowych, w których śmierć poniosło ok. 14% wszystkich zabitych na polskich drogach, jest to bardzo istotne zagadnienie wymagające dokładnego rozpoznania. Analizy danych o zdarzeniach drogowych wskazują na bardzo poważny problem występowania przeszkód w otoczeniu dróg. Dane za lata 2007 – 2016 przedstawiają, że w wyniku wypadków na łukach ok. 45% wszystkich ofiar śmiertelnych zarejestrowanych na tym fragmencie sieci drogowej, miało miejsce przy uderzeniu w przeszkodę w pobliżu jezdni: słup, znak i przede wszystkim drzewo.

Parametry łuków poziomych i samo ich występowanie uznaje się za jeden z ważniejszych czynników wpływających na bezpieczeństwo ruchu drogowego. Wyniki badań tego zagadnienia [1, 2, 3] sugerują, że bezpieczeństwo związane z poruszaniem się po łukach poziomych wynika z trzech powiązanych ze sobą

536

kwestii: zaburzenie uwagi kierowcy, niedostosowanie prędkości do krzywizny oraz niewystarczająca szerokość pasa jezdni. Kolejnym ważnym czynnikiem uwzględnianym w badaniach jest stan nawierzchni w obrębie łuków poziomych [4].

Łuk w planie musi spełniać nie tylko kryteria bezpieczeństwa ruchu pojedynczego elementu drogi, ale również kryteria wynikające z faktu, że stanowi on integralną część drogi. Z tego względu dużą rolę w projektowaniu geometrycznym odgrywaja metody oceny jednorodności dróg. Na podstawie wyników badań opracowano liczne modele prędkości i ryzyka wypadkowego, w zależności od krętości i falistości oraz innych cech drogi, takich jak: długość prostej poprzedzającej łuk w planie, szerokość jezdni, szerokość i rodzaj poboczy oraz wyposażenie drogi w urządzenia brd [5, 6, 7, 8]. Iloczyn stosunku wskaźnika liczby wypadków z rannymi na łuku do analogicznego wskaźnika na prostej oraz stosunku energii kinetycznej pojazdu na prostej do energii kinetycznej pojazdu na łuku stanowi tzw. współczynnik niejednorodności geometrycznej drogi [9]. Niezwykle istotne jest prawidłowe dobieranie parametrów dotyczących planu sytuacyjnego, w tym projektowanie strefy bezpieczeństwa oraz dobór urządzeń brd [10] aby zwiększyć bezpieczeństwo uczestników ruchu drogowego. Aby to osiągnąć niezbędne jest modelowanie wpływu parametrów geometrii drogi na miary bezpieczeństwa ruchu drogowego. Próby takiego modelowania podjęto w badaniach prowadzonych przez Politechnikę Gdańską [11]. Wskazano, że zastosowanie barier ochronnych między przeszkodami a krawędzią jezdni znacznie zmniejsza ryzyko wystąpienia wypadków z ofiarami cieżko rannymi lub śmiertelnymi. Dalszych badań wymaga jednak ocena wpływu występowania urządzeń brd dla samych łuków poziomych.

2. Przegląd wyników badań numerycznych i eksperymentalne

W pracy [12] przedstawiono porównanie wyników eksperymentalnych i numerycznych testu zderzeniowego TB32 (pojazd o masie 1500 kg, prędkości 110 km/h, kąt uderzenia 20°) z barierą SP-05/2 w łuku poziomym wklęsłym o promieniu R=150 m w 4 wariantach różniących się prędkością nadjeżdżającego pojazdu, a także zastosowaną barierą. Badano 2 warianty bariery: bez nakładki oraz z nakładką energochłonną. We wnioskach zapisano, że w badaniu polowym bariery bez nakładki nie został spełniony warunek nakładany na tzw. pole wyjścia pojazdu po uderzeniu w barierę (tzw. exit box).

W pracy [13] omówiono wyniki numeryczne symulacji zderzenia lekkiego pojazdu osobowego z barierą stalową umocowaną w poziomym łuku wklęsłym. Rozpatrywano 3 warunki początkowe: 40 km/h, 60 km/h oraz 80 km/h. Przyjęto kąt uderzenia pojazdu równy 45°. Otrzymano odpowiednio następujące wartości współczynnika ASI (wskaźnik intensywności przyspieszenia, ang. Acceleration Severity Index): 0,18, 0,32 i 0,51. Praca [14] dotyczy symulacji zderzenia pojazdu z barierą betonową wklęsłą w poziomym łuku drogi. Badania numeryczne przeprowadzono dla trzech promieni: 50 m (wariant I), 100 m (wariant II) i 200 m (wariant III). Ponadto założono dwa przypadki: pojazd nadjeżdża z zewnętrznego pasa jezdni oraz drugi, gdy pojazd nadjeżdża z wewnętrznego pasa jezdni. Wyniki wskazały, że najbardziej niebezpiecznym przypadkiem jest zderzenie pojazdu z barierą zamontowaną na łuku o promieniu 50 m w wariancie najazdu z wewnętrznego pasa. Autorzy przedstawili wyniki wskazujące, że im większy promień łuku tym mniejsze wartości współczynnika ASI. Ponadto zauważono że w każdym z analizowanych przypadków promienia łuku, wartości ASI są mniejsze gdy pojazd nadjeżdża z zewnętrznego pasa jezdni.

Obszerne studium testów zderzeniowych bariery stalowej N2-W4-A na łuku drogi przedstawił Nycz [15]. Wykazał on, że bariera ochronna (skrajna) SP-05/2 z prowadnicą typu B ustawiona w łuku poziomym wklęsłym (R = 150m) drogi klasy G, GP, S, A nie spełnia wszystkich warunków przyjęcia badania zderzeniowego TB11 i TB32. W pracy [15] pokazano autorską koncepcję poprawy tej sytuacji polegającą na dodaniu nakładki kompozytowopianowej.

Dokument [16] zawiera pewne informacje dotyczące stosowania barier linowych w łuku poziomym drogi. Na podstawie badań numerycznych zauważono, że uderzenie w wypukłą stronę łuku powoduje zwiększenie wygięcia bariery ze względu na spadek siły napinającej gdy dochodzi do wypięcia liny ze słupków. W takim wypadku liny przyjmują kształt wzdłuż cięciwy łuku zamiast wzdłuż łuku. Zasugerowano, że rozmieszczenie słupków w dużym rozstawie jest niewskazane w łukach o promieniu mniejszym niż 400 m. Bowiem większe ugięcie bariery (mimo zapewnienia odpowiednio szerokiego obszaru za barierą) niekorzystnie wpływa na zdolność bariery do przejęcia nadjeżdżającego pojazdu i na możliwość prawidłowego jego wyprowadzenia po zderzeniu.

3. Program badań numerycznych

Na potrzeby niniejszej pracy przeprowadzano serię testów symulacyjnych, z zachowaniem normowych [17] wymagań testu TB11 (pojazd o masie 900 kg, uderzającego w barierę pod kątem 20°, z prędkością 100 km/h). W przypadku barier na łukach, kąt mierzony jest między prostą wzdłuż której porusza się pojazd przed uderzeniem, a prostą styczną do lica bariery w miejscu pierwszego kontaktu (w rzucie z góry), zob. rys. 1. Przeprowadzono 5 symulacji: dla odcinka prostego (promień $r = \infty$), łuk wypukły (r = +100, +400 m), łuk wklęsły (r = -100, -400 m).

Zasadniczy odcinek bariery ma długość 60 m na początku i końcu znajdują się 8-metrowe zakończenia, na długości których prowadnica bariery sprowadzo-

na jest do poziomu gruntu (rys. 2). Miejsce uderzenia w każdym z testów ulokowane jest w odległości 20 m od początku zasadniczej części bariery.

Rys. 1. Widok ogólny realizowanych symulacji Fig. 1. Overall view of analyzed variants

Rys. 2. Wymiary analizowanej bariery drogowej – łuk o promieniu r = +100 m Fig. 2. Dimensions of the analyzed barrier – curve with radius r = +100 m

Symulacje przeprowadzono za pomocą systemu metody elementów skończonych Ls-Dyna R8.1.0 [18] w wersji MPP double precision na platformie sprzętowej klastra obliczeniowego Tryton zarządzanego przez Centrum Informatyczne TASK przy Politechnice Gdańskiej. Za możliwość korzystania z zasobów klastra Autorzy wyrażają swoją wdzięczność administracji TASK.

3.1. Opis modelu bariery

Model numeryczny drogowej bariery stalowej (rys. 3.) powstał na podstawie dokumentacji typowej konstrukcji, stosowanej przy drogach w naszym kraju (parametry N2/W4/A). Model numeryczny składa się z 544958 węzłów, 529031 powłokowych elementów skończonych oraz 956 objętościowych elementów skończonych (modelowanie łączników). Charakterystyczne wymiary elementów skończonych zawierają się w przedziale 8-12 mm (rys. 4.) Zastosowano elementy powłokowe 4-węzłowe, typu Belytschko-Tsay, o zredukowanym całkowaniu. W celu przezwyciężenia problemu klepsydrowania, wprowadzono sztywnościowe tłumienie form pasożytniczych, dzięki czemu w analizach obserwowane są pomijalnie małe wartości energii form pasożytniczych.

Poszczególne części bariery mają grubość 3 i 4 mm i wykonane są ze stali S235. W obliczeniach numerycznych zastosowano model konstytutywny materiału sprężysto-plastycznego z odcinkowo liniowym wzmocnieniem.

Rys. 3. Ogólny widok modeli numeryczny bariery Fig. 3. Numerical model of barrier

3.2. Opis modelu pojazdu

Pojazd stosowany w symulacjach to Geo Metro (rys. 5.) który został pozyskany z zasobów projektu ROBUST (http://www.vegvesen.no/s/robust/ dostęp 1.04.2017). Pojazd poddano drobnym modyfikacjom, między innymi poprawiono geometrię zbieżności kół, zmodyfikowano wybrane parametry numeryczne oraz zagęszczono dyskretyzację w kluczowych obszarach styku pojazdu z barierą. Masa pojazdu wynosi 929 kg, składa się on z 20089 węzłów i 16291 elementów skończonych różnych typów. W pobliżu środka ciężkości umiejscowiony jest akcelerometr, w formie bryły sztywnej i dedykowanego elementu skończonego, rejestrujący przyspieszenia w lokalnym układzie współrzędnych pojazdu.

4. Wyniki symulacji

Na rysunku 6. pokazano przebieg wykonanych symulacji. W lewej kolumnie zbiorczo zestawiono widok z góry wszystkich 5 testów. W prawej kolumnie pokazano szczegółowo przebieg testu z wklęsłą barierą o promieniu r = -100 m. Test ten wyróżnia się spośród pozostałych trajektorią ruchu pojazdu. Samochód nie zostaje wyprowadzony z powrotem na pas ruchu, lecz wbija się w konstrukcję bariery i zostaje przez nią zatrzymany. Wiąże się to ze zniszczeniem początkowego 20-metrowego odcinka bariery. W pozostałych symulacjach pojazd został utrzymany w pasie ruchu, a poszczególne tory jazdy (zaznaczone linią ciągłą na rys. 6.) niewiele się od siebie różnią.

Rys. 4. Szczegół dyskretyzacji bariery Fig. 4. Close-up view on detail of barrier

Rys. 5. Widok ogólny i dyskretyzacja modelu pojazdu Geo Metro

Fig. 5. Overall view of the Geo Metro vehicle

Rys. 6. Przebieg symulacji. Lewa kolumna: zestawienie zrealizowanych zadań (zaznaczono ślad środka ciężkości). Prawa kolumna: zadanie r = -100 m

Fig. 6. Simulation. Left column: calculated variants (shown is the trajectory of the mass center). Right column: variant r = -100 m

542

W tabeli 1. zestawiono uzyskane wskaźniki (zob. [17]) ASI, THIV, PHD, W_m (szerokość pracująca) i W_n (znormalizowana szerokość pracująca). Tylko w teście r = -100 m zanotowano wartości, które nie kwalifikują bariery do uzyskania poziomu intensywności zderzenia A, w pozostałych testach ten poziom uzyskano (ASI $\leq 1,0$, PHD ≤ 20 g oraz THIV ≤ 33 km/h). Nieznaczne są również różnice w uzyskanej szerokości pracującej, która w 4 z 5 testów pozwala zaliczyć barierę do poziomu szerokości pracującej W3.

Przebiegi czasowe funkcji ASI (rys. 7.) wyraźnie wskazują na występowanie w większości przypadków dwóch maksimów lokalnych, które można skojarzyć z najeżdżaniem przez pojazd na kolejne słupki bariery (rys. 8.).

Zadanie	ASI, -	THIV, km/h	PHD, g	W _m , mm	W _n (poziom), mm
$\mathbf{r} = \infty$	0,75	22,8	15,4	793	800 (W3)
r = +100 m	0,69	22,5	16,8	807	814 (W3)
r = +400 m	0,72	23,2	16,6	814	822 (W3)
r = -100 m	2,35	61,3	29,1	1404	1420 (W5)
r = -400 m	0,75	24,1	17,8	813	820 (W3)

Tabela 1. Liczbowe wyniki symulacji Table 1. Parameters obtained in simulations

5. Uwagi końcowe

W pracy wskazano główne czynniki związane z bezpieczeństwem ruchu drogowego. Jednym z nich jest nieuniknione występowanie łuków poziomych o różnych parametrach. Podjęto próbę oszacowania wpływu zmiany promienia bariery drogowej na parametry bezpieczeństwa uzyskane w teście zderzeniowym TB11, poprzez wykonanie serii symulacji numerycznych. Uzyskane wyniki pozwalają stwierdzić, że na zachowanie bariery mają wpływ zarówno promień jej wygięcia, jak i sposób jej wygięcia (wklęsła lub wypukła). Zderzenie z wklęsłą barierą o małym promieniu może prowadzić do znacznych obrażeń uczestników wypadku, natomiast w innych rozpatrywanych przypadkach uzyskano parametry w zakresie "bezpiecznym".

Rys. 7. Przebiegi czasowe wskaźnika ASI Fig. 7. Time history of ASI

Rys. 8. Przebieg czasowy wskaźnika ASI dla przypadku r = +100 m, wybrane chwile czasowe Fig. 8. Time history of ASI for case r = +100 m, selected time steps

Podziękowania

Praca wykonana w ramach projektu Urządzenia bezpieczeństwa ruchu drogowego" (nr umowy DZP/RID-I-67/13/NCBR/2016). Obliczenia wykonano na komputerach Centrum Informatycznego Trójmiejskiej Akademickiej Sieci Komputerowej.

Literatura

- [1] Bella F. Coordination of horizontal and sag vertical curves on two-lane rural roads: Driving simulator study. IATSS Research, 39(1):51-57, 2015.
- [2] Charlton S. G. The role of attention in horizontal curves: A comparison of advance warning, delineation, and road marking treatments. Accident Analysis & Prevention, 39(5):873-885, 2007.
- [3] Elvik R.. International transferability of accident modification functions for horizontal curves. Accident Analysis & Prevention, 59:487-496, 2013.
- [4] Mondal S., Lucet Y., Hare W.. Optimizing horizontal alignment of roads in a specified corridor. Computers & Operations Research, 64:130-138, 2015.
- [5] NCHRP Report 500 Volume 7: A guide for reducing collisions on horizontal curves.
- [6] Low costs treatments of horizontal curve safety. Federal Highway Administration. 2006.
- [7] Khan G., Bill A. R., Chiturri M. and Noyce D. A. Horizontal Curves, Signs, and Safety. Transportation Research Record: Journal of the Transportation Research Board.
- [8] Zegeer C. V., Stewart R. J., Council F. M., and Reinfurt D. W. Cost-Effective Geometric Improvements for Safety Upgrading of Horizontal Curves. Report FHWA-RD-90-021. FHWA, Washington, D.C., 1991.
- Kempa J. Charakterystyki ruchu swobodnego na krzywoliniowych odcinkach dróg w planie. Wydawnictwa Uczelniane Uniwersytetu Technologiczno-Przyrodniczego Bydgoszcz 2008.
- [10] Jamieson NJ., Waibl G., Davies, R. Use of roadside barriers versus clean zones. NZ Transport Agency. Research Report, New Zeland.
- [11] Budzyński M., Jamroz K., Jeliński Ł., Antoniuk M.:: Why are trees still such a major hazard to drivers in Poland?, W: 6th Transport Research Arena (TRA), 2016, ELSEVIER SCIENCE BV.
- [12] Klasztorny M., Zielonka K., Nycz D.B., Posuniak P., Romanowski R.: Eksperymentalne i symulacyjne testy zderzeniowe bariery SP-05/2 w łuku poziomym wklęsłym, XIV Konferencja Naukowo-Techniczna Techniki Komputerowe w Inżynierii 2016.
- [13] Nasution R.P., Siregar R.A., Fuad K., Adom A.H.: The Effect of ASI (Acceleration Severity Index) to Different Crash Velocities, Proceedings of International Conference on Applications and Design in Mechanical Engineering (ICADME) 11–13 October 2009, Batu Ferringhi, Penang, Malaysia.
- [14] Borkowski W., Hryciów Z., Rybak P., Wysocki J.: Analiza skuteczności betonowych barier ochronnych na łuku drogi. Przegląd Mechaniczny LXXI (7-8), 2012, s. 21-24.
- [15] Nycz D.: Modelowanie i badania numeryczne testów zderzeniowych bariery klasy N2-W4-A na łukach dróg. 2015, Wojskowa Akademia Techniczna, Warszawa.

- [16] Guidance for the Selection, Use, and Maintenance of Cable Barrier Systems, NCHRP REPORT 711, 2012.
- [17] PE-EN 1317-1/8, Systemy ograniczające drogę Część 1-8. Polska Norma (części przygotowane i w trakcie przygotowania).
- [18] Livermore Software Technology Corporation, 7374 Las Positas Road, Livermore, CA 94551, www.lstc.com.

NUMERICAL SIMULATIONS OF CURVED ROAD STEEL BARRIER

Summary

The paper presents main factors related to traffic safety, indicating road curves as places of occurrence of significant number of fatal accidents. In the numerical simulations, a series of tests with variable radius of barrier in the TB11 crash test was performed. The effect of differentiation of barrier geometry on safety parameters was assessed.

Keywords: road safety devices, numerical simulations, crash tests, road curves, Finite Element Method

Przesłano do redakcji: 20.04.2017 r. Przyjęto do druku: 01.09.2017 r.