PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water-borne pressure-sensitive adhesives acrylics modified using amorphous silica nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The application of water-borne pressure-sensitive adhesives (PSA) based on acrylics is increasing in a variety of industrial areas. The have been used for manufacturing of double sided and carrier free mounting tapes, splicing tapes, marking and sign films, self-adhesive labels, packaging tapes, protective films and diverse high quality medical materials. Nano-sized inorganic fillers can modify diverse adhesive and self-adhesive coating properties such as tack, peel adhesion, shear strength at 20°C and 70°C, and removability Amorphous synthetic silica nanoparticles in form of water dispersions: Ludox PX-30 (30 wt.% silica stabilizing with counter ion sodium), Ludox PT-40 (40 wt.% silica stabilizing with counter ion sodium), Ludox PT-40AS (40 wt.% silica stabilizing with counter ion ammonium), and Ludox PW-50 (50 wt.% silica stabilizing with counter ion sodium) (from Grace) in concentrations between 1 and 5wt.% were used for modifying of water-born pressure-sensitive adhesive acrylics: Acronal 052, Acronal CR 516 (both BASF) and Plextol D273 (Synthomer) properties. It has been found in this study that the nano-technologically reinforced system containing of Acronal 052 and amorphous silica Ludox PX-30 showed a great enhancement in tack, peel adhesion and shear strength. In this paper we evaluate the performance of Acronal 052 modified with amorphous silica Ludox PX-30.
Rocznik
Strony
124--128
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Organic Technology, Pułaskiego 10, 70-322 Szczecin, Poland
  • Pasaco, Toruńska 63a, 86-050 Solec Kujawski, Poland
  • UTP University of Science and Technology, Department of Environmental Chemistry, Faculty of Agriculture and Biotechnology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
Bibliografia
  • 1. Czech, Z. (1999). Crosslinking of pressure-sensitive adhesives based on acrylics, Ed. Szczecin University of Technology, Szczecin, ISBN 83-87423-18-1.
  • 2. Zosel, A. (1985) Adhesion and Tack of Polymers: Influence of Mechanical Properties and Surface Tensions. Coll. & Pol. Sci. 263(7), 541–553. DOI: 10.1007/BF01421887.
  • 3. Czech, Z. & Wesolowska, M. (2007). Development of solvent-free acrylic pressure-sensitive adhesives. Eur. Pol. J. 43, 3604–3612. DOI: 10.1016/j.eurpolymj.2007.05.003.
  • 4. Czech, Z. (2003). Crosslinking of pressure-sensitive adhesives based on water-borne acrylates. Pol. Int. 52, 347–357. DOI: 10.1002/pi.1151.
  • 5. Nakayama, Y. (1998). Polymer blend systems for water-borne paints. Prog. Org. Coat. 33, 108–116. DOI: 10.1016/S0300-9440(98)00021-6.
  • 6. Frisch, F. (2003). Nanotechnology gives a boost to adhesive technology. Adhäsion 4, 16–19.
  • 7. Krüger, G. (2006) Nanoparticles of SiO2, ZrO2 and BaSO4 in Acrylate Dispersions. Coating 3, 113–115.
  • 8. Sprenger, S., Eger, C., Kinloch, A. & Ambrose, C. (2004). Nanoadhesives: toughness and high strength, Adh. Adh. & Seal 3, 20–24.
  • 9. Imerito, T. (2005). Nanotechnology building from the bottom and building the bottom line. JOM 57(12), 18–23. DOI: 10.1007/s11837-005-0177-z.
  • 10. Hertel, T. (2004). Kohlenstoff-Nanoröhren: Bausteine der Mikroelektronik von Morgen. Nach. Chem. 52, 137–140.
  • 11. Liu, J., Fu, S., Yuan, B. & Deng, Z. (2010). Toward a Universal „Adhesive Nanosheet“ for the Assembly of Multiple Nanoparticles Based on a Protein-Inducted Reduction/Decoration of Graphene Oxide. J. Amer. Chem. Sci. 132, 7279–7281, DOI: 10.1021/ja100938r.
  • 12. Lopez, A., Canetta, L., Creton, C. & Keddie, J. (2011) Waterborne Polyurethane-Acrylic Hybrid Nanoparticles by Miniemulsion Polymerisation: Applications in Pressure-Sensitive Adhesives. Langmuir 27, 3878–3888. DOI: 10.1021/la104830u.
  • 13. Czech, Z., Arabczyk, W., Hełminiak, A. & Kowalczyk, A. (2013). Influence of iron carbide filler in carbon matrix on the tack, peel adhesion, shear strength of acrylic pressure-sensitive adhesives. Int. J. Adh. Adh. 40, 210–214.
  • 14. Wady, A.F., Machado, A.L., Zucolotto, V. & Zamperini, C.A. (2012). Evaluation of Canadia albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. J. App. Micro. 112, 1163–1172. DOI: 10.1111/j.1365-2672.2012.05293.x.
  • 15. Li, M., Daniels, E., Dimonie, V., Sudol, E. & El-Aasser, S. (2005). Preparation of Polyurethane/Acrylic Hybrid Nano-particles via a Miniemulsion Polymerization Process. Macromol 38, 4183–4192. DOI: 10.1021/ma048141z.
  • 16. Gashti, M.P., Ali & Shamei, F.A. (2012). Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nonocomposite coating. Surf. Coat. Tech. 206, 3208–3215. DOI: 10.1016/j.surfcoat.2012.01.006.
  • 17. Amerio, E., Fabbri, P., Malucelli, G., Messori, M., Sangermano, M. & Taurino, R. (2008). Scratch resistance of nano-silica reinforced acrylic coatings. Prog. Org. Coat. 62, 129–133. DOI: 10.1016/j.progcoat.2007.10.003.
  • 18. Czech, Z. Kowalczyk, A. & Ortyl, J. 2013. Acrylic pressure-sensitive adhesives containing SiO2 nanoparticles. Pol. J. Chem. Tech. 15(1), 12–14. DOI: 10.2478/pjct-2013-0003.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad1b035b-0fdc-4a58-b60f-863100deaa3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.