PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydromagnetic effects on non-Newtonian Hiemenz flow

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stagnation point flow of a non-Newtonian Reiner-Rivlin fluid has been studied in the presence of a uniform magnetic field. The technique of similarity transformation has been used to obtain the selfsimilar ordinary differential equations. In this paper, an attempt has been made to prove the existence and uniqueness of the solution of the resulting free boundary value problem. Monotonic behavior of the solution is discussed. The numerical results, shown through a table and graphs, elucidate that the flow is significantly affected by the non-Newtonian cross-viscous parameter L and the magnetic parameter M.
Wydawca
Rocznik
Strony
95--104
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
  • Department of Mathematics, National Institute of Technology Rourkela, Odisha, Rourkela 769008, India
autor
  • Department of Mathematics, National Institute of Technology Rourkela, Odisha, Rourkela 769008, India
Bibliografia
  • [1] F. T. Akyildiz, S. Tatar and S. Ulusoy, Existence and uniqueness for a nonlinear inverse reaction-diffusion problem with a nonlinear source in higher dimensions, Math. Methods Appl. Sci. 36 (2013), no. 17, 2397-2402.
  • [2] P. D. Ariel, Hiemenz flow in hydromagnetics, Acta Mech. 103 (1994), no. 1-4, 31-43.
  • [3] P. D. Ariel, A new finite-difference algorithm for computing the boundary layer flow of viscoelastic fluids in hydromagnetics, Comput. Methods Appl. Mech. Engrg. 124 (1995), no. 1-2, 1-13.
  • [4] P. D. Ariel and I. Teipel, On dual solutions of stagnation point flow of a viscoelastic fluid, Z. Angew. Math. Mech. 74 (1994), no. 8, 341-347.
  • [5] W. A. Coppel, On a differential equation of boundary-layer theory, Philos. Trans. Roy. Soc. London Ser. A 253 (1960), 101-136.
  • [6] L. K. Forbes, Steady flow of a “Reiner-Rivlin” fluid between rotating plates, Phys. Fluids 30 (2018), Article ID 103104.
  • [7] S. P. Hastings and J. B. McLeod, Classical Methods in Ordinary Differential Equations, Grad. Stud. Math. 129, American Mathematical Society, Providence, 2012.
  • [8] K. Hiemenz, Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech. J. 326 (1911), 321-324.
  • [9] M. K. Kwong, The shooting method and multiple solutions of two/multi-point BVPs of second-order ODE, Electron. J. Qual. Theory Differ. Equ. 2006 (2006), Paper No. 6.
  • [10] T. R. Mahapatra and S. Sidui, Non-axisymmetric Homann stagnation-point flow of a viscoelastic fluid towards a fixed plate, Eur. J. Mech. B Fluids 79 (2020), 38-43.
  • [11] T. Y. Na, Computational Methods in Engineering Boundary Value Problems, Math. Sci. Eng. 145, Academic Press, New York, 1979.
  • [12] J. E. Paullet, Analysis of stagnation point flow of an upper-convected Maxwell fluid, Electron. J. Differential Equations 2017 (2017), Paper No. 302.
  • [13] M. Reiner, A mathematical theory of dilatancy, Amer. J. Math. 67 (1945), 350-362.
  • [14] B. Sahoo, Hiemenz flow and heat transfer of a third grade fluid, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 811-826.
  • [15] B. Sahoo and F. Labropulu, Steady Homann flow and heat transfer of an electrically conducting second grade fluid, Comput. Math. Appl. 63 (2012), 1244-1255.
  • [16] B. Sahoo and I. V. Shevchuk, Heat transfer due to revolving flow of ‘Reiner-Rivlin” fluid over a stretchable surface, Thermal Sci. Eng. Progr. 10 (2019), 327-336.
  • [17] P. Samanta and C. Srinivasa Rao, Existence and uniqueness of a non-negative monotonic solution of a nonlinear ordinary differential equation, Differ. Equ. Dyn. Syst. (2019), DOI 10.1007/s12591-019-00483-x.
  • [18] M. Sheikholeslami and M. M. Bhatti, Influence of external magnetic source on nanofluid treatment in a porous cavity, J. Porous Media 22 (2019), 1475-1491.
  • [19] I. Tlili, M. M. Bhatti, S. M. Hamad, A. A. Barzinjy, M. Sheikholeslami and A. Shafee, Macroscopic modeling for convection of hybrid nanofluid with magnetic effects, Phys. A 534 (2019), Article ID 122136.
  • [20] R. A. Van Gorder and K. Vajravelu, Hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet, Mech. Res. Comm. 37 (2010), no. 1, 113-118.
  • [21] H. Weyl, On the differential equations of the simplest boundary-layer problems, Ann. of Math. (2) 43 (1942), 381-407.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad1a8b38-ef1f-41e8-abc9-be1b53141dc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.