PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of colloidal montmorillonite particles on froth flotation of graphite, galena and fluorite

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of colloidal montmorillonite (MMT) on froth flotation of graphite, galena and fluorite was investigated in this work. The results showed that the presence of sufficient amount of colloidal MMT particles in the mineral slurry would be detrimental of flotation by reducing the recovery of minerals. This observation was attributed to slime coating of MMT on the coarse valuable mineral particles and entrainment of MMT particles in the froth product together with water in the triangle froth zones. The former would reduce the recovery of the valuable minerals because of hydrophilic MMT coating. The latter would decrease the concentrate grade. The degree of slime coating depended on slurry pH, while the degree of entrainment was closely related to water recovery. It was also found that slime coating was a dominant factor in mineral flotation in acidic pH regions in the presence of colloidal MMT particles.
Słowa kluczowe
Rocznik
Strony
699--713
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
Bibliografia
  • APLAN F.F., 1997. The Historical Development of Coal Flotation in United States. Adv. Flotat. Technol.
  • ARNOLD B.J., APLAN F.F., 1986. The effect of clay slimes on coal flotation, part I: The nature of the clay. Int. J. Miner. Process. 17, 225–242.
  • CHEN Q., ZHU R., DENG W., XU Y., ZHU J., TAO Q., HE H., 2014. From used montmorillonite to carbon monolayer–montmorillonite nanocomposites. Appl. Clay Sci. 100, 112–117.
  • CILEK E.C., 2009. The effect of hydrodynamic conditions on true flotation and entrainment in flotation of a complex sulphide ore. Int. J. Miner. Process. 90, 35–44.
  • DE CASTRO B.F.H., DE HOCES C.M., 1996. Flotation rate of celestite and calcite. Chem. Eng. Sci. 51, 119–125.
  • DEER W.A., HOWIE R.A., ZUSSMAN J., 1978. Rock-forming Minerals.
  • DELGADO A., GONZALEZ-CABALLERO F., BRUQUE J.M., 1985. On the zeta potential and surface charge density of montmorillonite in aqueous electrolyte solutions. J. Colloid Interface Sci. 113, 203–211.
  • FARROKHPAY S., NDLOVU B., BRADSHAW D., 2016. Behaviour of swelling clays versus non-swelling clays in flotation. Miner. Eng. 96-97, 59–66.
  • GÜLER T., AKDEMIR Ü., 2012. Statistical evaluation of flotation and entrainment behavior of an artificial ore. Trans. Nonferrous Met. Soc. China 22, 199–205.
  • HE M., WANG Y., FORSSBERG E., 2004. Slurry rheology in wet ultrafine grinding of industrial minerals: a review. Powder Technol. 147, 94–112.
  • HUYNH L., FEILER A., MICHELMORE A., RALSTON J., JENKINS P., 2000. Control of slime coatings by the use of anionic phosphates: A fundamental study. Miner. Eng. 13, 1059–1069.
  • KELEBEK S., SMITH G.W., 1989. Electrokinetic properties of a galena and chalcopyrite with the collectorless flotation behaviour. Colloids and Surfaces 40, 137–143.
  • LYNCH A.J., JOHNSON N.W., MANLAPIG E.V., THORNE C.G., 1981. Mineral and Caol Flotation Circuits - Their Simulation and Control. Hydrometallurgy 3, 193.
  • NDLOVU B., BECKER M., FORBES E., DEGLON D., FRANZIDIS J.P., 2011. The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Miner. Eng. 24, 1314–1322.
  • NDLOVU B., FORBES E., FARROKHPAY S., BECKER M., BRADSHAW D., DEGLON D., 2014. A preliminary rheological classification of phyllosilicate group minerals. Miner. Eng. 55, 383–389.
  • OBERNDORFER J., DOBIÁŠ B., 1989. Adsorption mechanism of anionic surfactants on sparingly soluble minerals. Colloids and Surfaces 41, 69–76.
  • TEH E.J., LEONG Y.K., LIU Y., FOURIE A.B., FAHEY M., 2009. Differences in the rheology and surface chemistry of kaolin clay slurries: The source of the variations. Chem. Eng. Sci. 64, 3817–3825.
  • WAKAMATSU T., NUMATA Y., 1991. Flotation of graphite. Miner. Eng. 4, 975–982.
  • WANG C.C., JUANG L.C., LEE C.K., HSU T.C., LEE J.F., CHAO H.P., 2004. Effects of cation exchange on the pore and surface structure and adsorption characteristics of montmorillonite. J. Colloid Interface Sci. 280, 27–35.
  • WANG Y., PENG Y., NICHOLSON T., LAUTEN R.A., 2015. The different effects of bentonite and kaolin on copper flotation. Appl. Clay Sci. 114, 48–52.
  • XU Z., LIU J., CHOUNG J., ZHOU Z., 2003. Electrokinetic study of clay interactions with coal in flotation. Int. J. Miner. 68, 183–196.
  • YANG H.-G., LI C.-Z., GU H.-C., FANG T.-N., 2001. Rheological Behavior of Titanium Dioxide Suspensions. J. Colloid Interface Sci. 236, 96–103.
  • YI Z., JINCHENG W., YOUCHENG D., CHEN P., WEN Z., 2014. Enhanced Application Properties of EPDM, Montmorillonite Composites 22, 799–808.
  • YIANATOS J., CONTRERAS F., 2010. Particle entrainment model for industrial flotation cells. Powder Technol. 197, 260–267.
  • ZHENG X., JOHNSON N.W., FRANZIDIS J.P., 2006. Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Miner. Eng. 19, 1191–1203.
  • ZHIJUN Z., JIONGTIAN L., ZHIQIANG X., LIQIANG M., 2013. Effects of clay and calcium ions on coal flotation. Int. J. Min. Sci. Technol. 23, 689–692.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad0ee380-270f-4423-9250-ba025b23a03b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.