PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

BEM Utility for Simulation of Linear Thermal Bridges

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to prove utility of the boundary element method for modelling 2D heat transfer in complex multiregions, particularly in thermal bridges. It proposes BEM as an alternative method commonly applied in commercial software for simulation of temperature field and heat flux in thermal bridges, mesh methods (FEM, FDM).The BEM algorithm with Robin boundary condition is developed for modelling 2D heat transfer in complex multi-regions. Simulation is performed with the authoring Fortran program. The developed mathematical algorithm and computer program are validated according to standard EN ISO 10211:2007. Two examples of complex thermal bridges that commonly appears in house building are presented. Analysis of two reference cases, listed in standard ISO, confirms utility of the proposed BEM algorithm and Fortran program for simulation of linear thermal bridges. Conditions, quoted in standard ISO, are satisfied with models of a relatively small number of boundary elements. Performed validation constitutes the base for further development of BEM as an efficient method for modelling heat transfer in building components, and for the prospective application in commercial software.
Twórcy
  • Białystok University of Technology Faculty of Civil and Environmental Engineering, HVAC Department
autor
  • Białystok University of Technology Faculty of Civil and Environmental Engineering, HVAC Department
Bibliografia
  • [1] J. Mackerle, FEM and BEM in the context of information retrieval, Computers and Structures 80, 1595-1604 (2002).
  • [2] J.T. Katsikadelis, Boundary Elements. Theory and Applications, Elsevier Science, Oxford 2002.
  • [3] C.A. Brebbia, J.C.F. Telles, and L.C. Wrobel, Boundary Element Techniques: Theory and Applications in Engineering, Springer-Verlag Berlin, Heidelberg 1984.
  • [4] M. Ramšak and L. Škerget, 3D multidomain BEM for solving the Laplace equation, Engineering Analysis with Boundary Elements 31, 528-538 (2007).
  • [5] M. Ramšak and L. Škerget, 3D multidomain BEM for a Poisson equation, Engineering Analysis with Boundary Elements 33, 689-694 (2009).
  • [6] J. Chatterjee, D.P. Henry, F. Ma, and P.K. Banerjee, An efficient BEM formulation for three-dimensional steady-state heat conduction analysis of composites, International Journal of Heat and Mass Transfer 51, 1439-1452 (2008).
  • [7] X.-W. Gao and J. Wang, Interface integral BEM for solving multi-medium heat conduction problems, Engineering Analysis with Boundary Elements 33, 539-546 (2009).
  • [8] X.-W. Gao and T.G. Davies, 3D multi-region BEM with corners and edges, International Journal of Solids and Structures 37, 1549-1560 (2000).
  • [9] M. Akif Atalay, E. Dilara Aydin, and M. Aydin, Multi-region heat conduction problems by boundary element method, International Journal of Heat and Mass Transfer 47, 1549-1553 (2004).
  • [10] E. Majchrzak, Boundary element method in heat transfer, Częstochowa University of Technology, Cz˛estochowa 2001, in Polish.
  • [11] Q. Xu and D-S. Yang, Solving multi-domain 2D heat conduction problems by the least squares collocation method with RBF interpolation on virtual boundary, Engineering Analysis with Boundary Elements 42, 37-44 (2014).
  • [12] F. Branco, A. Tadeu and N. Sim˝oes, Heat conduction across double brick walls via BEM, Building and Environment 39, 51-58 (2004).
  • [13] A. Tadeu, J. Prata and N. Sim˝oes, Dynamic simulation of three-dimensional heat conduction through cylindrical inclusions using a BEM model formulated in the frequency domain, Applied Mathematics and Computation 261, 397-407 (2015).
  • [14] E. Majchrzak, B. Mochnacki and M. Jasi´nski, Numerical modelling of bioheat transfer in multi layer skin tissue domain subjected to a flash fire, Computational Fluid and Solid Mechanics II, 1766-1770 (2003).
  • [15] E. Majchrzak, J. Mendakiewicz and A. Piasecka-Belkhayat, Algorithm of mould thermal parameters identification in the system casting mould environment, Journal of Materials Processing Technology 164-165, 1544-1549 (2005).
  • [16] A. Ben Larbi, Statistical modelling of heat transfer for thermal bridges of buildings, Energy and Buildings 37, 945-951 (2005).
  • [17] R. Yumruta¸s, M. Ünsal, and M. Kanoglu, Periodic solution of transient heat flow through multilayer walls and flat roofs by complex finite Fourier transform technique, Building and Environment 40, 1117-1125 (2005).
  • [18] G. Mao and G. Johannesson, Dynamic calculation of thermal bridges, Energy and Buildings 26, 233-240 (1997).
  • [19] F. Asdrubali, G. Baldinelli, and F. Bianchi, A quantitative methodology to evaluate thermal bridges in buildings, Applied Energy 97, 365-373 (2012).
  • [20] A. Tadeu, I. Simöes, N. Simöes, and J. Prata, Simulation of dynamic linear thermal bridges using a boundary element method model in the frequency domain, Energy and Buildings 43, 3685-3695 (2011).
  • [21] EN ISO 10211:2007, Thermal bridges in building construction – Heat flows and surface temperatures – Detailed calculations.
  • [22] PN-EN 12831:2006, Heating systems in buildings – method for calculation of the design heat load, in Polish.
  • [23] PN-EN ISO 6946: Building components and building elements – Thermal resistance and thermal transmittance –Calculation method, in Polish.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad0bfdaf-5361-47f2-a92b-f88ed02a0dc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.