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Abstract. The paper contains one theorem saying that, for arbitrary even k, every projective 
collineation in the three-dimensional projective space is a composition of two k-cyclic 
collineations.  
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The problem of decomposing of a linear transformation into some special transformations was 
investigated in many papers ([5], [6] for instance). This is also interesting what is the minimal 
number of such factors required. This task is known as the length problem.  

The well known property of the projective geometry says that any projectivity on a 
projective line P1 is a composition of two involutions. A generalisation of this fact was given 
in [2]. Namely, the following theorem was proved: Let P1(F) be one-dimensional projective 
space over an algebraically closed field F of characteristic 0, let k be an arbitrary integer not 
less than 2, and let f be a projective transformation of P1(F) onto itself. Then there exist 
exactly k-cyclic projective transformations g, h such that f=gh (a transformation f: X→X is 
called to be exactly k-cyclic if fk=id, and fm

≠id for m<k). In the case of the real projective line 
P1(R) the following property [3] holds: Let f  be a nonsingular projectivity in P1(R). If  
detF>0, then for every 2≤k≠3, there exist exactly k-cyclic projectivities g, h such that f=gh. If 
however detF<0, then for every k≥2 there exist an exactly k-cyclic projectivity g and an 
involution h such that f=gh (F denotes the matrix of f).  

In the case of P2(R) an analogous property [7] was formulated. Namely, the following 
theorem was proved: If f is a nonsingular projective collineation in P2(R) and k is an arbitrary 
integer not less than 3, then f is a composition of two exactly k-cyclic collineations.  

In this paper we shall deal with the complex projective space P3(C). E. W. Ellers [6] 
investigated a much more general situation. Namely, he considered a projective space of an 
arbitrary dimension (even infinite) over an arbitrary field (not necessarily commutative). 
However, in the particular case of P3(C), as it often occurs, the results from [6] can be 
improved.  

First of all, notice that there are 14 types of non-singular projective collineations in 
P3(C). They can be described [1], with the help of the Segre’s symbols, as follows: [1,1,1,1], 
[(1,1),1,1], [(1,1),(1,1)], [(1,1,1),1], [(1,1,1,1)], [1,1,2], [(1,2),1], [(1,1),2], [(1,1,2)], [2,2], 
[(2,2)], [1,3], [(1,3)], [4].  
Notice that if a collineation f is of type [1,1,1,1], then its matrix, in an allowable coordinate 
system, is of the form:  
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. Similarly, for the remaining types of collineations the respective 

consecutive matrices have the form: A2=
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Take into account matrices: 
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It is easy to see that the polynomial x4-Bx2+1 is the characteristic polynomial of each of 

matrices Bi (i=1,2…,14).  Similarly, the polynomial x4-B Adet i x2+ idet A  is the 

characteristic polynomial of the matrix BiA i, for all i. In both cases the roots of such a 
polynomial are all distinct and are roots of even degree of a polynomial of the form: xn-k.  

According to Theorem I [1] p. 353, all the matrices BiA i, Bi represent exactly n-cyclic 
collineations. Then the following property holds:  

For  a non-singular projective collineation f in P3(C) and an arbitrary even integer n 
not less than 6, there exist f two exactly n-cyclic collineations such that f is a composition of 
them.  

If n=4, the reader will find matrices  B’ i  having analogous properties as matrices Bi. 
In such a case the respective characteristic polynomial is x4+1 instead of x4-Bx2+1. Hence we 
can formulate:  

Theorem 
If f is a non-singular projective collineation in P3(C) and n is an arbitrary even integer 

not less than 4 then f is a composition of two exactly n-cyclic collineations.  
As we see the length problem was solved in an optimal way.  
Conjecture  
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The author is convinced that for odd integers an analogous theorem is true.  
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KOLINEACJE RZUTOWE JAKO ZŁO ŻENIA DWÓCH KOLINEACJI 
CYKLICZNYCH  

W pracy pokazano, że każda kolineacja rzutowa trójwymiarowej zespolonej przestrzeni 
rzutowej jest złożeniem dwóch kolineacji n-cyklicznych. Przy tym ma to miejsce dla dowolnej 
parzystej liczby naturalnej nie mniejszej niż 4. 
 
 


