PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rola krzemu w procesie eutrofizacji wód na przykładzie zbiorników Solina i Myczkowce

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The Role of Silicon in the Process of Eutrophication of the Waters – Solina and Myczkowce Reservoirs Case Study
Języki publikacji
PL
Abstrakty
EN
This paper reports on studies conducted during 2005–2006 years in the ecosystem of the Solina-Myczkowce mountain complex of mesotrophic reservoirs on the San River, SE Poland. The goal of the present study has been to analyse the functioning of the reservoirs as a dissolved silicon sink especially whether silicon assumes a limiting role where the biological productivity of reservoirs waters is concerned. Silicon is one of the biosphere’s most abundant elements, and one that – in the form of dissolved silica – serves as a very important nutrient playing a major role in the functioning of marine, coastal and inland waters. Investigations indicate that reservoirs are major sinks for the dissolved silica in a river system and that unfavorable changes in water chemistry downstream may ensue where (as is usually the case), the water discharged from a reservoir is poorer in Si than that supplied to it. The noted Si depletion in both the analysed reservoirs influenced growth of non-siliceous algae expressed in terms of chl a. Siliceous algal growth is usually observed there during spring. I suppose that the first chl a maximum in the case of the Solina Reservoir, and the only maximum in the Myczkowce Reservoir, result from the growth of both siliceous and green algae. The next increase in chl a – observed only in the Solina Reservoir – may result from the presence of the cyanobacteria often observed in warm lakes at the end of summer. Their absence from Myczkowce reflects the low temperature of that reservoir’s water, this being supplied from the hypolimnion of the upper one. These observations are confirmed in relationships between mean measured concentrations of Si and mean concentrations of chl a in the euphotic zone of the two reservoirs. Observed summer depletion of the silicate accelerates the growth of phytoplankton exponentially, especially in the case of the upper reservoir.
Rocznik
Strony
2218--2231
Opis fizyczny
Bibliogr. 23 poz., tab., rys.
Twórcy
autor
  • Politechnika Rzeszowska
Bibliografia
  • 1. Bartoszek L., Tomaszek J.A.: Analysis of the spatial distribution of phosphorus fractions in the bottom sediments of the Solina-Myczkowce dam reservoir complex. Environment Protection Engineering Vol. 37, Issue 3, 5–15 (2011).
  • 2. Billen, G., Lancelot, C. Meybeck, M.: N, P and Si Retention along Aquatic Continuum from Land to Ocean. In: R. F. C. Mantoura, J.-M Martin & R. Wollast (Eds.), Ocean Margin Processes in Global Change,. New York: John Wiley and Sons Ltd., 19–44 (1991).
  • 3. Borrelli N., Osterrieth M., Romanelli A., Alvarez M.F., Cionchi J.L., Massone H.: Biogenic silica in wetlands and their relationship with soil and groundwater biogeochemistry in the Southeastern of Buenos Aires Province, Argentina. Environmental Earth Sciences, Vol. 65, Issue 2, 469–480 (2012).
  • 4. Conley D.J., Stålnacke P., Pitkänen H., Wilander A.: The transport and retention of dissolved silicate by rivers in Sweden and Finland. Limnology and Oceanography, Vol. 45, 1850–1853 (2000).
  • 5. Cook P.L.M., Aldridge K.T., Lamontagne S., Brookes J.D.: Retention of nitrogen, phosphorus and silicon in a large semi-arid riverine lake system Biogeochemistry, Vol. 99, 49–63 (2010).
  • 6. Dzialowski A.R., Wang S.-H., Lim N.-C., Spotts W.W., Huggins D.G.: Nutrient limitation of phytoplankton growth in central plains reservoirs, USA. Journal of Plankton Research Vol. 27, 587–595 (2005).
  • 7. Garnier J., Beusen A., Thieu V., Billen G., Bouwman L.: N:P:Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach. Global Biogeochemical Cycles Vol. 24, art. no. GB0A05 (2010).
  • 8. Gromiec M., Winnicki T.: Projekt polityki wodnej państwa a diagnoza stanu gospodarki wodnej. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 13, 283–302 (2011).
  • 9. Guildford, S. J., Hecky R. E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans, Is there a common relationship? Limnology and Oceanography, Vol. 45, 1213–1223 (2000).
  • 10. Harashima A., Kimoto T., Wakabayashi T., Toshiyasu T.: Verification of the silica deficiency hypothesis based on biogeochemical trends in the aquatic continuum of Lake Biwa – Yodo River – Seto Inland Sea, Japan. Ambio, Vol. 35, 36–42 (2006).
  • 11. Humborg C., Blomquist S., Avsan E., Bergensund Y., Smedberg E., Brink J., Mörth C.-M.: Hydrological alterations with river damming in northern Sweden: Implications for weathering and river biochemistry. Global Biogeochemical Cycles, 16, (2002).
  • 12. Humborg C., Pastuszak M., Aigars J., Siegmund H., Mörth C.-M., Ittekkot V.: Diatoms silica land-sea fluxes through damming in the Baltic Sea catchment – significance of particle trapping and hydrological alterations. Biogeochemistry, Vol. 77, 265–281 (2006).
  • 13. Ilnicki P.: Przyczyny, źródła i przebieg eutrofizacji wód powierzchniowych. Przegląd Komunalny, Vol. 125, 35–49 (2002).
  • 14. Koszelnik P., Tomaszek J.A., Gruca-Rokosz R.: The significance of denitrification in relation to external loading and nitrogen retention in a mountain reservoir. Marine and Freshwater Research, Vol. 58, 818–826, (2007).
  • 15. Koszelnik P., Tomaszek J.A.: Dissolved silica retention and its impact on eutrophication in a complex of mountain reservoirs. Water, Air and Soil Pollution, Vol. 189. 189–198 (2008).
  • 16. Koszelnik P.: Źródła i dystrybucja pierwiastków biogennych na przykładzie zespołu zbiorników zaporowych Solina-Myczkowce. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 1–147 (2009).
  • 17. Lehmann M.F., Bernasconi S.M., McKenzie J.A., Barbieri A., Simona M., Veronesi M.: Seasonal variation of the δ13C and δ15N of particulate and dissolved carbon and nitrogen in Lake Lugano: Constraints on biogeochemical cycling in a eutrophic lake. Limnology and Oceanography, Vol. 49, 415–429, (2004).
  • 18. Liu S. M., Zhang J., Chen H.T., Wu Y., Xiong H., Zhang Z.F.: Nutrients in the Changjiang and its tributaries. Biogeochemistry, Vol. 62, 1–18 (2003).
  • 19. Prus T., Prus M., Prus P., Ozimek T.: Charakterystyka ekologiczna zbiorników zaporowych Solina-Myczkowce. Materiały II Międzynarodowej Konferencji Naukowo-Technicznej „Błękitny San”, 21–23 kwietnia 2005, Dynów, 33–47 (2005).
  • 20. SchelskeC.L.: Diatoms as mediators of biogeochemical silica depletion in the Laurentian Great Lakes. In E.F. Stoermer. P. Smol (Eds.), The Diatoms: Applications for the Environmental and Earth Science, Cambridge University Press, 73–84 (1999).
  • 21. Tallberg P., Koski-Vähälä J.: Silicate induced phosphate release from surface sediment in eutrophic lakes. Archiv für Hydrobiologie, 151, 221–245 (2001).
  • 22. Teodoru C., Wehrli B.: Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River. Biogeochemistry, 2005, Vol. 76, 539–565 (2005).
  • 23. Wang F., Yu Y., Liu C., Wang B., Wang Y., Guan J., Mei H.: Dissolved si¬licate retention and transport in cascade reservoirs in Karst area, Southwest China. Science of The Total Environment, Vol. 408, 1667–1675 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad0451c6-cfae-4d0f-9da0-ff000ae50cad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.