PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

IR radiation method in moisture testing of various types of grains

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to compare the possibilities of using various research techniques to determine the moisture content of wheat, barley and corn. The research material consisted of grain samples collected immediately after 2022 harvest from various climatic and cultivation areas located in Poland. Grain moisture content was determined using a grain moisture meter (GAC), NIR analyzer, and moisture analyzer (MA). The grain moisture content varied depending on the type of grain, the research method used and the climatic and cultivation area. Corn grain had the highest moisture content, on average 31.42±6.83%, and the lowest moisture content was found in wheat grain, 12.60±5.05%, and barley grain, 12.81±0.88%. The type of grain, shape, and the share of pericarp-seed coat influenced the differences in moisture results depending on the research technique. It was found that the precision of moisture results, which is a measure of grain moisture diversity, did not depend on the research technique, but on the climatic and cultivation area from which grain samples were taken for testing. The largest differences in moisture results between methods were obtained for corn from region II, when moisture was determined using the GAC grain moisture meter. For wheat and barley, the discrepancies in the accuracy of the analysis amounted to a maximum of 0.33%. It was found that the NIR, GAC and MA methods can be used interchangeably while maintaining appropriate research procedures.
Twórcy
  • Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, Department of Grain Processing and Bakery, Rakowiecka 36, 02-532 Warszawa, Poland
  • Radwag Metrology Research and Certification Center, Radwag Wagi Elektroniczne, Poland
  • aculty of Applied Chemistry, Casimir Pulaski Radom University, Poland
autor
  • Sensory Analysis Laboratory, Department of Non-food Product Quality and Safety, Kraków University of Economics, Rakowicka 27, 31-510 Kraków, Poland
Bibliografia
  • 1. GUS. Wstępny szacunek głównych ziemiopłodów rolnych i ogrodniczych w 2022 r. Główny Urząd Statystyczny. https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/uprawy-rolne-i-ogrodnicze/wstepny-szacunek-glownych-ziemioplodow-rolnych-i-ogrodniczych-w-2022-roku,3,16.html.
  • 2. Almaleeh A. A., Zakaria A., Zakaria S. M. M. S., Kamarudin L. M., Rahiman M. H. F., Sukor A. S. A., Rahim Y. A., Adom A. H. A review on the efficiency and accuracy of localization of moisture distributions sensing in agricultural silos. IOP Conference Series: Materials Science and Engineering. 2019; 705: 012054. https://doi.org/10.1088/1757-899X/705/1/012054.
  • 3. Hanif S., Sultan M., Miyazaki T., Koyama S. Evaluation of solid desiccant-based drying system for energy-efficient drying of agricultural products. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers. 2018; 35(4): 347–352. https://doi.org/10.11322/tjsrae.18-40AC_OA.
  • 4. Galindo F. S., Zocoler J. L., Filho M. C. M. T., Buzetti S., Santini J. M. K., Alves C. J., Ludkiewicz M. G. Z. Losses in wheat crop as a function of the water content of the grains at harvest. Brazilian Journal of Agriculture – Revista de Agricultura. 2018; 93(2): 138–148. https://doi.org/10.37856/bja.v93i2.3212.
  • 5. EN 15948:2020. Cereals – Determination of moisture and protein – Method using Near-Infrared-Spectroscopy in whole kernels.
  • 6. ISO 7700-1:2008. Food products – Checking the performance of moisture meters in use – Part 1: Moisture meters for cereals.
  • 7. EN ISO 712:2009. Cereals and cereal products – Determination of moisture content – Reference method.
  • 8. ISO 6540:2021. Maize – Determination of moisture content (on milled grains and on whole grains).
  • 9. Falkowicz K., Valvo P. S. Influence of composite lay-up on the stability of channel-section profiles weakened by cut-outs – A numerical investigation. Advances in Science and Technology Research Journal. 2023; 17(1): 108–115. https://doi.org/10.12913/22998624/156635.
  • 10. Terelak-Tymczyna Y., Bachtiak-Radka A. W., Grzesiak D., Jardzioch A. Comparison of the classic and hybrid production methods with the use of SLM taking into account the aspects of sustainable production development. Advances in Science and Technology Research Journal. 2023; 17(1): 94–107. https://doi.org/10.12913/22998624/156916.
  • 11. Nelson S. O. Grain and seed moisture sensing applications. In: Dielectric Properties of Agricultural Materials and Their Applications. Elsevier; 2015: 77–108. https://doi.org/10.1016/B978-0-12-802305-1.00007-5.
  • 12. Institute of Cultivation, Fertilization and Soil Science – National Research Institute. Susza w województwach i w Polsce w uprawach zbóż ozimych w 2022. https://susza.iung.pulawy.pl/komentarz/2022,14.
  • 13. Skowera B., Baranowska A., Węgrzyn A., Bartoszek K., Wojkowski J., Ivanišová E. The meteorological conditions of precipitation deficits in the cultivation of winter wheat in Central and Eastern Poland. Journal of Ecological Engineering. 2023; 24(9): 50–62. https://doi.org/10.12911/22998993/168349.
  • 14. Hatice P. Cereal storage techniques: A review. Journal of Agricultural Science and Technology B. 2016; 6(2). https://doi.org/10.17265/2161-6264/2016.02.001.
  • 15. Mishra A., Prabuthas P., Mishra H. N. Grain storage: Methods and measurements. Quality Assurance and Safety of Crops and Foods. 2012; 4(3): 136–158. https://doi.org/10.1111/j.1757-837X.2012.00151.x.
  • 16. Kumar D., Kalita K. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods. 2017; 6: 8. https://doi.org/10.3390/foods6010008.
  • 17. Salamon A., Abramczyk D., Bednarczyk E., Boniecka A., Wojtowicz Ł., Wilczyński W. Ziarno jęczmienia – wartość technologiczna ze zbiorów 2022 r. Instytut Biotechnologii Przemysłu Rolno-Spożywczego. https://www.ibprs.pl/wp-content/uploads/2022/12/Ziarno_jeczmienia_wartosc_technologiczna_ze_zbiorow_2022.pdf.
  • 18. Lykhovyd P. V. Prediction of sweet corn yield depending on cultivation technology parameters by using linear regression and artificial neural network methods. Biosystems Diversity. 2018; 26(1): 11–15. https://doi.org/10.15421/011802.
  • 19. Fan X., Guan Z. A lightweight intelligent learning method for corn diseases recognition. Agriculture. 2023; 13: 1606. https://doi.org/10.3390/agriculture13081606.
  • 20. Lee S., Abatzoglou J. T. Effects of water surplus on prevented planting in the US Corn Belt for corn and soybeans. Environmental Research Communications. 2023; 5: 095014. https://doi.org/10.1088/2515-7620/acf919.
  • 21. Williams R., O’Brien L., Eagles H., Solah V., Jayasena V. The influences of genotype, environment, and genotype×environment interaction on wheat quality. Australian Journal of Agricultural Research. 2008; 59. https://doi.org/10.1071/AR07185.
  • 22. Muste S., Modoran C., Man S., Muresan V., Birou A. The influence of wheat genotype on its quality. Journal of Agroalimentary Processes and Technology. 2010; 16(2): 99–103.
  • 23. Knapowski T., Ralcewicz M., Spychaj-Fabisiak E., Ložek O. Ocena jakości ziarna pszenicy ozimej uprawianej w warunkach zróżnicowanego nawożenia azotem. Fragmenta Agronomica. 2010; 27(1): 73–80.
  • 24. IUNG. Klimatyczny bilans wodny dla okresu od 11 maja do 10 lipca 2022 r. https://www.iung.pl/2022/07/07/klimatyczny-bilans-wodny-dla-okresu-od-1-maja-do-30-czerwca-2022-roku/.
  • 25. Szafrańska A. Quality of Polish Wheat Harvest 2021 r. Instytut Biotechnologii Przemysłu Rolno-Spożywczego – PIB. https://www.ibprs.pl/wp-content/uploads/2022/11/Wheat_crop_report_2022_Harvest.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad008a1b-183d-498b-9541-b77f11515775
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.