PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Organic Micropollutants from an Agricultural Drainage Ditch Contaminate a Shrimp Farm in Sinaloa (Mexico)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among nutrients and pesticides, agricultural draining ditches also transport pollutants discharged with untreated wastewater from the municipalities adjoining the ditch. When the ditch water is used for irrigation and aquaculture, risks for the environment and food production are suggested. For the conducted field study, a shrimp farm in Sinaloa (Mexico) was used to trace organic pollutants (pesticides and pharmaceutical residues) on their way from an agricultural draining ditch to a shrimp farm fed partially by the drain water. The concentrations of pollutants in the drain water ranged from 10 ng L-1 to 453 ng L-1. The pond water of the shrimp farm contained concentrations between <10 ng L-1 and 177 ng L-1. The shrimps were contaminated by pollutants at concentrations between 40 μg kg-1 d.w. (dry weight) to 3.3 mg kg-1 d.w. (fungicide Metalaxyl). Health risks for the cultivated shrimps cannot be excluded because some pesticides are known for their toxic effects to crustaceans. The concentrations of selected antibiotics in the shrimps were low and comparable with those found in the shrimps declared as seawater shrimps from a German supermarket. The incorporation of the antibiotics was probably caused by contact to the wastewater in the shrimp ponds and/or by contaminated shrimp feed. Additionally to the anthropogenic chemicals, coliforms were determined in the water (total coliforms: 30-50 CFU 100 mL-1; fecal coliforms: 0-20 CFU 100 mL-1). These values agree with the Mexican Norm NOM-242-SSA1-2009 representing a microbiological quality of water adequate for aquaculture. The number of coliforms measured in shrimp was higher than in pond water, suggesting bioaccumulation and a potential health risk for consumers.
Rocznik
Strony
143--152
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • UFZ-Helmholtz Center for Environmental Research, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
  • LAR Process Analysers AG, Neukoellnische Alle 134, 12057 Berlin, Germany
  • Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, CP 80010 Culiacán, Sinaloa, México
  • Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, CP 80010 Culiacán, Sinaloa, México
  • UFZ-Helmholtz Center for Environmental Research, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
  • UFZ-Helmholtz Center for Environmental Research, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
  • Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, CP 80010 Culiacán, Sinaloa, México
Bibliografia
  • 1. Ababouch L., Afilal M. E., Rhafiri S., Busta F. F. 1991. Identification of histamine-producing bacteria isolated from sardine (Sardina pilchardus) stored in ice and at ambient temperature (25°C). Food Microbiology, 8(2), 127-136. http://dx.doi.org/10.1016/0740-0020(91)90005-M.
  • 2. Ahumada-Santos Y. P., Báez-Flores M. E., Díaz-Camacho S. P., Uribe-Beltrán M. de Jesús López-Angulo G., Vega-Aviña R., Chávez-Duran F. A., Montes-Avila J., Carranza-Díaz O., Möder M., Kuschk P., Delgado-Vargas F. 2014. Spatio-temporal distribution of bacterial contamination of an agricultural-domestically affected drain water at Sinaloa (Mexico). Ciencias Marinas, 40, 277–289. https://doi.org/10.7773/cm.v40i4.2456
  • 3. Ahumada-Santos Y. P., Delgado-Vargas F., Báez-Flores M. E., López-Angulo G., Díaz-Camacho S. P., Moeder M., Parra-Unda J. R. 2022. Multidrug resistance and class 1 integron presence in Escherichia coli isolates from a polluted drainage ditch’s water. Int. J. Environ. Health Research https://doi.org/10.1080/09603123.2022.2115468
  • 4. Camacho-Muñoz D., Petrie B., Lopardo L., Proctor K., Rice J., Youdan J., Barden R., Kasprzyk-Hordern B. 2019. Stereoisomeric profiling of chiral pharmaceutically active compounds in wastewaters and the receiving environment – a catchment scale and a laboratory study. Environment International, 127, 558-572. doi: 10.1016/j.envint.2019.03.050.
  • 5. Cortés A., Casillas-Hernández R., Cambeses-Franco C., Bórquez-López R., Magallón-Barajas F., Quadros-Seiffert W., Feijoo G., Moreira M. T. 2021. Eco-efficiency assessment of shrimp aquaculture production in Mexico. Aquaculture, 544, 737145. http://hdl.handle.net/10347/26601.
  • 6. Belton K., Schaefer E., Guiney P. D. 2019. A Review of the Environmental Fate and Effects of Acesulfame-Potassium. Integrated Environmental Assess & Management, 16/4, 421–437. https://doi.org/10.1002/ieam.4248.
  • 7. Bôto M., Almeida C. M. R., Mucha A. P. 2016. Potential of Constructed Wetlands for Removal of Antibiotics from Saline Aquaculture Effluents. Water, 8, 465-479. doi:10.3390/w8100465.
  • 8. Bottoni P., Caroli S., Caracciolo A. B. 2010. Pharmaceuticals as priority water contaminants. Toxicology & Environmental Chemistry, 92 (3), 549–565. https://doi.org/10.1080/02772241003614320
  • 9. Castronovo S., Wick A., Scheurer M., Nödler K., Schulz M., Ternes T. A. 2017. Biodegradation of the artificial sweetener acesulfame in biological wastewater treatment and sandfilters. Water Research, 110, 342-353. https://doi.org/10.1016/j.watres.2016.11.041.
  • 10. Chen H., Shan Liu, Xiang-Rong Xu, Shuang-Shuang Liu, Guang-Jie Zhou, Kai-Feng Sun, Jian-Liang Zhao, Guang-Guo Ying, 2015. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure. Marine Pollution Bulletin, 90, 181-187. doi: 10.1016/j.marpolbul.2014.10.053
  • 11. Cycoń M., Mrozik A., Piotrowska-Seget Z. 2019. Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Frontiers in Microbiology, 10, 338, https://doi.org/10.3389/fmicb.2019.00338
  • 12. DeWalt B. R., Ramírez Zavala J. R., Noriega L., Esthela González R. 2002. Shrimp aquaculture, the people and the environment in coastal Mexico. Report for the World Bank, Network of Aquaculture Centers in Asia-Pacific, World Wildlife Fund and Food and Agriculture Organization of the United Nations, Consortium Program on Shrimp Farming and the Environment.
  • 13. Ellingwood K. and Sanchez C. 2010. Mexico cracks down on self-prescribed antibiotics.
  • 14. https://www.latimes.com/archives/la-xpm-2010-jun-14-la-fg-mexico-antibiotics-
  • 15. 20100614-story.html (access April 16, 2021).
  • 16. FAO, 2020. The state of world fisheries and aquaculture. Available at:
  • 17. http://www.fao.org/3/ca9229en/ca9229en.pdf
  • 18. Farrapeira C. M. R., Mendes E. S., Dourado J., Guimaraes J. 2010. Coliform accumulation in Amphibalanus amphitrite (Darwin, 1854) (Cirripedia) and its use as an organic pollution bioindicator in the estuarine area of Recife, Pernambuco, Brazil. Brazilian Journal Biology, 70, 301-309. http://dx.doi.org/10.1590/S1519-69842010000200011.
  • 19. FDA U.S. Food and Drug Administration, FDA Renews Refusals of Antibiotic-Contaminated Shrimp, https://www.shrimpalliance.com/fda-renews-refusals-of-antibiotic-contaminated-shrimp/
  • 20. Ferrari B., Mons R., Vollat B., Fraysse B., Paxéus N., Giudice R., Pollio A., Garric J. 2004. Environmental Risk Assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental Toxicolology & Chemistry, 23, 1344–54, doi: 10.1897/03-246.
  • 21. Flores-Miranda B.M. , Espinosa-Plascencia A., Gómez-Jiménez S., López-Zavala A. A., González-Carrillo H. H. Bermúdez-Almada M. C. 2012. Accumulation and Elimination of Enrofloxacin and Ciprofloxacin in Tissues of Shrimp Litopenaeus vannamei under Laboratory and Farm Conditions. ISRN Pharm. 374212. doi: 10.5402/2012/374212.
  • 22. Fritts M. W., Deboer J. A., Fritts A. K., Kellock K. A., Bringolf R. B., Casper A. F. 2016. Survey of intersex occurrence in largemouth bass (Micropterus salmoides) from the Upper Illinois River Waterway. American Midland Naturalist, 176, 158-65. doi: http://dx.doi.org/10.1674/0003-0031-176.1.158.
  • 23. Garcia R. N., Chung K. W., DeLorenzo M. E., Curran M. C. 2014. Individual and mixture effects of caffeine and sulfamethoxazole on the daggerblade grass shrimp Palaemonetes pugio following maternal exposure. Environmental Toxicology & Chemistry, 33(9), 2120-5. doi: 10.1002/etc.2669.
  • 24. Gräslund S. and Bengtsson B.-E. 2001. Chemicals and biological products used in south-east Asia shrimp farming, and their potential impact on the environment – a review. Science Total Environment, 280, 93-131, doi: 10.1016/s0048-9697(01)00818-x.
  • 25. Han S., Choi K., Kim J., Ji K., Kim S., Ahn B., Yun J., Choi K., Khim J. S., Zhang X., Giesy J. P. 2010. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquatic Toxicolology, 98(3), 256-264. http://doi.org/10.1016(j.aquatox.2010.02.013.
  • 26. Hanekamp J. C. 2020. Chloramphenicol in shrimp: Europe as food safety utopia. Global Aquaculture Advocate, accessed 8/13/2020. https://www.aquaculturealliance.org/advocate/chloramphenicol.
  • 27. Hansen K. 2021. Shrimp farms spread in Sinaloa, https://earthobservatory.nasa.gov/images/148128/shrimp-farms-spread-in-sinaloa.
  • 28. Hatosy S. M. and Matiny A. C. 2015. The ocean as a global reservoir of antibiotic resistance genes. Applied Environmental Microbiology, 81(21), 7593-9, doi: 10.1128/AEM.00736-15.
  • 29. Hernández-Cornejo R., Ruiz-Luna A. 2000. Development of shrimp farming in the coastal zone of southern Sinaloa (Mexico): operating characteristics, environmental issues, and perspectives. Ocean & Coastal Management, 43, 597-607, doi:10.1016/S0964-5691(00)00049-1.
  • 30. Islam M. J., Liza A. A., Reza A. H. M. M., Reza M. S., Khan M. N. A., Kamal M. 2014. Source identification and entry pathways of banned antibiotics nitrofuran and chloramphenicol in shrimp value chain of Bangladesh. Eurasia Journal Bioscience, 8, 71-83. doi:10.5053/ejobios.2014.8.0.7.
  • 31. Kahl S., Kleinsteuber S., Nivala J., van Afferden M., Reemtsma T. 2018. Emerging Biodegradation of the Previously Persistent Artificial Sweetener Acesulfame in Biological Wastewater Treatment. Environmental Science & Technology, 52, 2717-2725. doi: 10.1021/acs.est.7b05619.
  • 32. Mathias F. T., Fockink D. H., Disner G. R., Prodocimo V., Coelho Ribas J. L., Pereira Ramos L., Cestari M. M., Silva de Assis H. C. 2018. Effects of low concentrations of ibuprofen on freshwater fish Rhamdia quelen. Environmental Toxicology Pharmacology, 59, 105-113. doi: 10.1016/j.etap.2018.03.008.
  • 33. Moeder M., Carranza-Diaz O., López-Angulo G., Vega-Aviña R., Chávez-Durán F. A., Jomaa S., Winkler U., Schrader S., Reemtsma T., Delgado-Vargas F. 2017. Potential of vegetated ditches to mitigate organic pollutants derived from agricultural runoff and domestic sewage: A case study in Sinaloa (Mexico). Science Total Environment, 598, 1106-1115, doi: 10.1016/j.scitotenv.2017.04.149.
  • 34. Morales-Covarrubias M. S., Hernández-Cornejo R., García-Gasca A. 2009. Study identifies white spot variants in Sinaloa, Mexico. Global Aquaculture Advocate, https://www.globalseafood.org/advocate/study-identifies-white-spot-variants-sinaloa-mexico/
  • 35. Muñoz I. Martínez Bueno M. J., Agüera A. 2010. Fernández-Alba AR, Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm. Environmental Pollution, 158, 1809-1816. doi: 10.1016/j.envpol.2009.11.006.
  • 36. Näslund J., Fick J., Asker N., Ekman E., Larsson D. G. J., Norrgren L. 2017. Diclofenac affects kidney histology in the three-spined stickleback (Gasterosteus aculeatus) at low μg/L concentrations. Aquatic Toxicology, 189, 87-96, doi: 10.1016/j.aquatox.2017.05.017.
  • 37. NOAA Fisheries’ “Fisheries of the United States”, report 2018, access: Feb 19th 2021, https://www.shrimpalliance.com/shrimp-hits-record-high-levels-of-consumption-in-united-states/
  • 38. Okocha R. C-, Olatoye I. O., Adedeji O. B. 2018. Food safty impacts of antimicrobial use and their residues in aquaculture. Public Health Reviews, 39, 21-43.
  • 39. Páez-Osuna F., Álvarez-Borrego S., Ruiz-Fernández A. C., García-Hernández J., Jara-Marini M. .E, Bergés-Tiznado M. E., Piñón-Gimate A., Alonso-Rodríguez R., Soto-Jiménez M. F., Frías-Espericueta M. G., Ruelas-Inzunza J. R., Green-Ruiz C. R., Osuna-Martínez C. C., Sanchez-Cabeza J.-A. 2017. Environmental status of the Gulf of California: A pollution review. Earth-Science Reviews, 166, 181–205.
  • 40. PubChem – Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B. A., Thiessen P. A., Yu B., Zaslavsky L., Zhang J., Bolton E. E. 2019. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research, 47(D1), D1388-D1395.
  • 41. Putth S. and Polchana J. 2016. Current status and impact of early mortality syndrome (EMS)/acute hepatopancreatic necrosis disease (AHPND) and hepatopancreatic microsporidiosis (HPM) outbreaks on Thailand s shrimp farming. Proceedings of the ASEAN Regional Technical Consultation on EMS/AHPND, pp. 79-87.
  • 42. PPDB Pesticide Properties DataBase, University of Hertfordshire, last updated: 02/11/2020 and VSDB Veterinary Substances Data Base, University of Hertfordshire, last updated: 02/04/2018
  • 43. Regulation (EU) 2019/6 on Veterinary Medicines, Regulation (EU) 2019/4 on Medicated Feed, https://eur-lex.europa.eu/eli/reg/2019/6/ojand https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX-32019R0004.
  • 44. Ripabelli G., Sammarco M. L., Fanelli I., Grasso G. M. 2004. Detection of Salmonella, Listeria spp., Vibrio spp., and Yersinia enterocolitica in frozen seafood and comparison with enumeration for faecal indicators: implication for public health. http://hdl.handle.net/11695/329.
  • 45. Schar D., Klein E. Y., Laxminarayan R., Gilbert M., Van Boeckel T. P. 2020. Global trends in antimicrobial use in aquaculture. Scientific reports, 10, 21878. https://doi.org/10.1038/s41598-020-78849-3.
  • 46. Stancova V., Zikova A., Svobodova Z., Kloas W. 2015. Effects of the non-steroidal anti-inflammatory drug (NSAID) naproxen on gene expression on antioxidant enzymes in zebrafish (Danio rerio). Environmental Toxicology Pharmacology, 40, 343-348. doi: 10.1016/j.etap.2015.07.009.
  • 47. Sucahyo D., van Straalen N. M., Krave A., van Gestel C. A. M. 2008. Acute toxicity of pesticides to the tropical freshwater shrimp Caridina laevis. Ecotox Environ Safety, 69, 421-427. doi: 10.1016/j.ecoenv.2007.06.003.
  • 48. Thornber K., Verner-Jeffreys D., Hinchliffe S., Meezanur Rahman M., Bass D., Tyler C. R. 2020. Evaluating antimicrobial resistance in the global shrimp industry. Reviews in Aquaculture, 12, 966-986. doi: 10.1111/raq.12367.
  • 49. Trapp, S. 2004. Plant uptake and Transport Models for neutral and Ionic Chemicals. Environmental Science Pollution Research, 11, 33-39. doi: 10.1065/espr2003.08.169.
  • 50. Wojcieszyńska D. and Guzik U.,(2020. Naproxen in the environment: its occurrence, toxicity to non-target organisms and biodegradation. Applied Microbiology Biotechnology, 104, 1849–1857. doi: 10.1007/s00253-019-10343-x.
  • 51. Yokota H., Taguchi Y., Tanaka Y., Uchiyama M., Kondo M., Tsuruda Y., Suzuki T., Eguchi S. 2018. Chronic exposure to diclofenac induces delayed mandibular defects in medaka (Oryzias latipes in a sex dependent manner. Chemosphere, 210, 139-146. doi: 10.1016/j.chemosphere.2018.07.016.
  • 52. Xie Z., Lu G., Liu J., Yan Z., Ma B., Zhang Z., Chen W. 2015. Occurrence, bioaccumulation, and trophic magnification of pharmaceutically active compounds in Taihu Lake, China. Chemosphere, 138, 140-147. doi: 10.1016/j.chemosphere.2015.05.086.
Uwagi
1. Błędna numeracja w bibliografii (poz. 13-17).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acffa29e-3885-4b4c-bef1-b10941f46cb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.