PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust H∞ fuzzy approach design via Takagi‐Sugeno descriptor model. application for 2‐DOF serial manipulator tracking control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on trajectory tracking control for ro‐ bot manipulators. While much research has been done on this issue, many other aspects of this field have not been fully addressed. Here, we present a new solution using feedforward controller to eliminate parametric uncer‐ tainties and unknown disturbances. The Takagi‐Sugeno fuzzy descriptor system (TSFDS) is chosen to describe the dynamic characteristics of the robot. The combination of this fuzzy system and the robust H∞ performance makes the system almost isolated from external factors. The li‐ near matrix inequalities based on the theory of Lyapunov stability is considered for control design. The proposed method has proven its effectiveness through simulation results.
Twórcy
  • Hanoi University of Science and Technology, Dai Co Viet, Ha Noi, Viet Nam
  • Hanoi University of Science and Technology, Dai Co Viet, Ha Noi, Viet Nam
  • Hanoi University of Science and Technology, Dai Co Viet, Ha Noi, Viet Nam
  • Hanoi University of Science and Technology, Dai Co Viet, Ha Noi, Viet Nam
Bibliografia
  • [1] X. Yuan, B. Chen, and C. Lin, “Fuzzy adaptive output‑feedback tracking control for nonlinear strict‑feedback systems in prescribed finite time,” Journal of the Franklin Institute, vol. 358, no. 15, pp. 7309–7332, 2021.
  • [2] D. Cui, Y. Wang, H. Su, Z. Xu, and H. Que, “Fuzzy‑model‑based tracking control of markov jump nonlinear systems with incomplete mode information,”Journal of the Franklin Institute, vol. 358, no. 7, pp. 3633–3650, 2021.
  • [3] A. Li, M. Liu, and Y. Shi, “Adaptive sliding mode attitude tracking control for ϐlexible spacecraft systems based on the takagi‑sugeno fuzzy modelling method,” Acta Astronautica, vol. 175, pp. 570–581, 2020.
  • [4] X. Yin, L. Pan, and S. Cai, “Robust adaptive fuzzy sliding mode trajectory tracking control for serial robotic manipulators,” Robotics Computer‑Integrated Manufacturing, vol. 72, p. 101884, 2021.
  • [5] B.‑S. Chen, C.‑H. Chang, and H.‑C. Lee, “Robust synthetic biology design: stochastic game theory approach,” Bioinformatics, vol. 25, no. 14, pp. 1822–1830, 05 2009.
  • [6] X. Cheng, P. Wang, and G. Tang, “Fuzzy‑reconstruction‑based robust tracking control of an air‑breathing hypersonic vehicle,” Aerospace Science and Technology, vol. 86, pp. 694–703, 2019.
  • [7] Y. Liu, Z. Wang, Y. Wang, D. Wang, and J. Xu, “Cascade tracking control of servo motor with robust adaptive fuzzy compensation,” Information Sciences, vol. 569, pp. 450–468, 2021.
  • [8] G. Sun, Z. Ma, and J. Yu, “Discrete‑time fractional order terminal sliding mode tracking control for linear motor,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3386–3394, 2018.
  • [9] H. Ouyang, Z. Tian, L. Yu, and G. Zhang, “Adaptive tracking controller design for double‑pendulum tower cranes,” Mechanism and Machine Theory, vol. 153, p. 103980, 2020.
  • [10] A. Aftab and X. Luan, “A fuzzy‑pid series feedback self‑tuned adaptive control of reactor power using nonlinear multipoint kinetic model under reference tracking and disturbance rejection,” Annals of Nuclear Energy, vol. 166, p. 108696, 2022.
  • [11] G. Bao, Z. Zeng, and Y. Shen, “Region stability analysis and tracking control of memristive recurrent neural network,” Neural Netw., vol. 98, pp. 51–58, 2018.
  • [12] L. Li, Z. Chen, and Y. Wang, “Robust task‑space tracking for free‑ϐloating space manipulators by cerebellar model articulation controller,” Emerald Publishing Limited, vol. 39, pp. 26–33, 2019.
  • [13] Y. Pan and G.‑H. Yang, “Event‑based output tracking control for fuzzy networked control systems with network‑induced delays,” Applied Mathematics and Computation, vol. 346, pp. 513–530, 2019.
  • [14] C. Liu, G. Luo, Z. Chen, W. Tu, and C. Qiu, “A linear adrc‑based robust high‑dynamic double‑loop servo system for aircraft electro‑mechanical actuators,” Chinese Journal of Aeronautics, vol. 32, no. 9, pp. 2174–2187, 2019.
  • [15] F. Doostdar and H. Mojallali, “An adrc‑based backstepping control design for a class of fractional‑order systems,” ISA Transactions, 2021.
  • [16] Y. Zhang, Z. Chena, M. Suna, and X. Zhangb, “Trajectory tracking control of a quadrotor uav based on sliding mode active disturbance rejection control,” Nonlinear Analysis: Modelling and Control, vol. 24, no. 4, pp. 545–560, 2019.
  • [17] J.‑J. Yan, G.‑H. Yang, and X.‑J. Li, “Fault detection in finite frequency domain for t‑s fuzzy systems with partly unmeasurable premise variables,” Fuzzy Sets and Systems, vol. 421, pp. 158–177, 2021.
  • [18] C. Han, G. Zhang, L. Wu, and Q. Zeng, “Sliding mode control of t–s fuzzy descriptor systems with time‑delay,”Journal of the Franklin Institute, vol. 349, no. 4, pp. 1430–1444, 2012.
  • [19] W. Zheng, H. Wang, H. Wang, and S. Wen, “Stability analysis and dynamic output feedback controller design of t–s fuzzy systems with time‑varying delays and external disturbances,” Journal of Computational and Applied Mathematics, vol. 358, pp. 111–135, 2019.
  • [20] J. Wang, S. Ma, and C. Zhang, “Finite‑time H∞ control for t–s fuzzy descriptor semi‑markov jump systems via static output feedback,” Fuzzy Sets and Systems, vol. 365, pp. 60–80, 2019.
  • [21] H. Schulte and K. Guelton, “Descriptor modeling towards control of a two link pneumatic robot manipulator: A t–s multimodel approach,” Nonlinear Analysis: Hybrid Systems, vol. 3, no. 2, pp. 124–132, 2009.
  • [22] H.‑N. Wu, Z.‑P. Wang, and L. Guo, “Disturbance observer based reliable H∞ fuzzy attitude tracking control for Mars entry vehicles with actuator failures,” Aerospace Science and Technology, vol. 77, pp. 92–104, 2018.
  • [23] H.‑N. Wu, S. Feng, Z.‑Y. Liu, and L. Guo, “Disturbance observer based robust mixed H2/H∞ fuzzy tracking control for hypersonic vehicles,” Fuzzy Sets and Systems, vol. 306, pp. 118–136, 2017.
  • [24] J. Dong and S. Wang, “Robust H∞‑tracking control design for t–s fuzzy systems with partly immeasurable premise variables,” Journal of the Franklin Institute, vol. 354, no. 10, pp. 3919–3944, 2017.
  • [25] G. Scorletti, V. Fromion, and S. De Hillerin, “Toward nonlinear tracking and rejection using lpv control,” IFAC‑PapersOnLine, vol. 48, no. 26, pp. 13–18, 2015.
  • [26] R. Maiti, K. Das Sharma, and G. Sarkar, “Linear consequence‑based fuzzy parallel distributed compensation tl1 adaptive controller for two link robot manipulator,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 10, pp. 3978–3990, 2019.
  • [27] E. F. Stephen Boyd, Laurent El Ghaoui and V. Balakrishnan, “Linear matrix inequalities in system and control theory,” pp. 154–155, 1994.
  • [28] J. He, F. Xu, X. Wang, and B. Liang, “Admissibility analysis and robust stabilization via state feedback for uncertain t‑s fuzzy descriptor systems,” pp. 1–8, 2020.
  • [29] J. Li, Q. Zhang, X.‑G. Yan, and S. K. Spurgeon, “Observer‑based fuzzy integral sliding mode control for nonlinear descriptor systems,” IEEE 28 Transactions on Fuzzy Systems, vol. 26, no. 5, pp. 2818–2832, 2018.
  • [30] K. Lochan and B. K. Roy, “Control of two‑link 2‑dof robot manipulator using fuzzy logic techni‑ques: A review,” Proceedings of Fourth International Conference on Soft Computing for Problem Solving, vol. 335, pp. 499–511, 2014.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acfd163b-f7d7-4311-be87-8353a7ab959b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.