PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Behaviour of moraine soils stabilised with OPC, GGBFS and hydrated lime

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to evaluate the effects of blended binders on the development of strength in moraine soils by optimising the proportion of several binders. We tested three types of soil as a mixture of moraine soils: A (sandy clay), B (clayey silt) and C (silty clay), collected in southern Sweden. The soil was compacted using a modified Proctor test using the standard SS-EN 13286-2:2010 to determine optimum moisture content. The particle size distribution was analysed to determine suitable binders. The specimens of types A, B and C, were treated by six different binders: ordinary Portland cement (OPC); hydrated lime (Ca(OH)2); ground granulated blast furnace slag (GGBFS) and their blends in various proportions. The strength gain in soil treated by binders was evaluated by the test for Unconfined Compressive Strength (UCS) against curing time. For soil type A, the strength increase is comparable for most of the binders, with the difference in behaviour in the UCS gain. The OPC/lime, GGBFS and hydrated lime showed a direct correlation, while OPC, OPC/GGBFS and GGBFS/hydrated lime – a quick gain in the UCS by day 28th. After that, the rate of growth decreased. Compared to soil type A, Ca(OH)2 performs better on the stabilisation of soil type B. Besides, the hydrated lime works better on the gain of the UCS compared to other binders. The GGBFS/Ca(OH)2 blend shows a notable effect on soil type A: the UCS of soil treated by Ca(OH)2 performs similarly to those treated by OPC with visible effects on day 90th. Cement and a blend of slag/hydrated lime demonstrated the best results for soil type B. An effective interaction was noted for the blends GGBFS and hydrated lime, which is reflected in the UCS development in soils type A and B. Blended binder GGBFS/hydrated lime performs better compared to single binders.
Słowa kluczowe
Rocznik
Strony
319--334
Opis fizyczny
Bibliogr. 44 poz., tab., wykr.
Twórcy
autor
  • Swedish Transport Administration, Department of Investments Technology and Environment, Neptunigatan 52, Box 366, SE-201-23 Malmö, Sweden
  • Lund University, Lunds Tekniska Högskola (LTH), Faculty of Engineering, Department of Building and Environmental Technology, Division of Building Materials, Sweden
  • Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis (LISA) Belgium
Bibliografia
  • [1] D.T. Hozatlıoğlu, I. Yılmaz, Shallow mixing and column performances of lime, fly ash and gypsum on the stabilization of swelling soils. Engineering Geology 280, 105931 (2021). DOI: https://doi.org/10.1016/j.enggeo.2020.105931.
  • [2] H. Sturm, Numerical investigation of the stabilisation behaviour of shallow foundations under alternate loading. Acta Geotechnica 4, 283 (2009). DOI: https://doi.org/10.1007/s11440-009-0102-7.
  • [3] H. Yu, X. Huang, J. Ning, B. Zhu, Y. Cheng, Effect of cation exchange capacity of soil on stabilized soil strength. Soils and Foundations 54 (6), 1236-1240 (2014). DOI: https://doi.org/10.1016/j.sandf.2014.11.016.
  • [4] E. Adesanya, A. Aladejare, A. Adediran, A. Lawal, M. Illikainen, Predicting shrinkage of alkali-activated blast furnace-fly ash mortars using artificial neural network (ANN). Cement and Concrete Composites 124, 104265, (2021). DOI: https://doi.org/10.1016/j.cemconcomp.2021.104265.
  • [5] M.H. Fasihnikoutalab, S. Pourakbar, R.J. Ball, C. Unluer, N. Cristelo, Sustainable soil stabilisation with ground granulated blast-furnace slag activated by olivine and sodium hydroxide. Acta Geotechnica 15, 1981-1991 (2020). DOI: https://doi.org/10.1007/s11440-019-00884-w.
  • [6] K. Raja, S. Venkatachalam, K. Vishnuvardhan, R. Siva Rama Krishnan, V. Tamil Selvan, N. Vetriselvan, A review on soil stabilization using rice husk ash and lime sludge. Materials Today: Proceedings, In Press, Corrected Proof. (2022). DOI: https://doi.org/10.1016/j.matpr.2022.04.178.
  • [7] P. Lindh, Compaction- and strength properties of stabilised and unstabilised fine-grained tills. PhD Thesis, Lund University, Lund, Sweden (2004). DOI: https://doi.org/10.13140/RG.2.1.1313.6481.
  • [8] C. Suksiripattanapong, R. Sakdinakorn, S. Tiyasangthong, N. Wonglakorn, C. Phetchuay, W. Tabyang, Properties of soft Bangkok clay stabilized with cement and fly ash geopolymer for deep mixing application. Case Studies in Construction Materials 16, e01081 (2022). DOI: https://doi.org/10.1016/j.cscm.2022.e01081.
  • [9] T. Chompoorat, T. Thepumong, A. Khamplod, S. Likitlersuang, Improving mechanical properties and shrinkage cracking characteristics of soft clay in deep soil mixing. Construction and Building Materials 316, 125858 (2022). DOI: https://doi.org/10.1016/j.conbuildmat.2021.125858.
  • [10] P. Lindh, P. Lemenkova, Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag-Cement Sediments. Nordic Concrete Research 65 (2), 39-62 (2021). DOI: https://doi.org/10.2478/ncr-2021-0012.
  • [11] M. Hren, V. B. Bosiljkov, A. Legat, Effects of blended cements and carbonation on chloride-induced corrosion propagation. Cement and Concrete Research 145, 106458 (2021). DOI: https://doi.org/10.1016/j.cemconres.2021.106458.
  • [12] P. Lindh, P. Lemenkova, P. Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments. Acta Mechanica et Automatica 15 (4), 236-248 (2021). DOI: https://doi.org/10.2478/ama-2021-0030.
  • [13] M. Arandigoyen, B. Bicer-Simsir, J.I. Alvarez, D.A. Lange, Variation of microstructure with carbonation in lime and blended pastes. Applied Surface Science 252 (20), 7562-7571 (2006). DOI: https://doi.org/10.1016/j.apsusc.2005.09.007.
  • [14] P. Lindh, P. Lemenkova, Geochemical tests to study the effects of cement ratio on potassium and TBT leaching and the pH of the marine sediments from the Kattegat Strait, Port of Gothenburg, Sweden. Baltica 35 (1), 47-59 (2022). DOI: https://doi.org/10.5200/baltica.2022.1.4.
  • [15] F. Wang, H. Wang, F. Jin, A. Al-Tabbaa, The performance of blended conventional and novel binders in the insitu stabilisation/solidification of a contaminated site soil. Journal of Hazardous Materials 285, 46-52 (2015). DOI: https://doi.org/10.1016/j.jhazmat.2014.11.002.
  • [16] Y.-S. Feng, Y.-J. Du, K.R. Reddy, W.-Y. Xia, Performance of two novel binders to stabilize field soil with zinc and chloride: Mechanical properties, leachability and mechanisms assessment. Construction and Building Materials 189, 1191-1199 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.072.
  • [17] P. Lindh, Optimising binder blends for shallow stabilisation of fine-grained soils. Ground Improvement 5, 23-34 (2001). DOI: https://doi.org/10.1680/grim.2001.5.1.23.
  • [18] H.M. Jafer, W. Atherton, M. Sadique, F. Ruddock, E. Loffill, Development of a new ternary blended cementitious binder produced from waste materials for use in soft soil stabilisation. Journal of Cleaner Production 172, 516-528 (2018). DOI: https://doi.org/10.1016/j.jclepro.2017.10.233.
  • [19] AustStab (1999) National AustStab GuidelinesÐAustralian Binders used for Road Stabilization. AustStab, June, Version C. URL: https://www.auststab.com.au/wordy/wp-content/uploads/2017/01/national-auststab-guideline-05.pdf.
  • [20] S. Mahvash, S. López-Querol, A. Bahadori-Jahromi, Effect of class F fly ash on fine sand compaction through soil stabilization. Heliyon 3 (3), e00274 (2017). DOI: https://doi.org/10.1016/j.heliyon.2017.e00274.
  • [21] R.K. Etim, D.U. Ekpo, I.C. Attah, K.C. Onyelowe, Effect of micro sized quarry dust particle on the compaction and strength properties of cement stabilized lateritic soil. Cleaner Materials 2, 100023 (2021). DOI: https://doi.org/10.1016/j.clema.2021.100023.
  • [22] O.G. Ingles, J.B. Metcalf, Soil stabilisation: principles and practice. Sydney, Australia, Butterworths (1972).
  • [23] P. Lindh, P. Lemenkova, Dynamics of Strength Gain in Sandy Soil Stabilised with Mixed Binders Evaluated by Elastic P-Waves during Compressive Loading. Materials 15, 7798 (2022). DOI: https://doi.org/10.3390/ma15217798.
  • [24] P. Lindh, P. Lemenkova, Seismic velocity of P-waves to evaluate strength of stabilized soil for Svenska Cellulosa Aktiebolaget Biorefinery Östrand AB, Timrå. Bulletin of the Polish Academy of Sciences: Technical Sciences 70 (4), e141593 (2022). DOI: https://doi.org/10.24425/bpasts.2022.141593.
  • [25] O. Uyanık, Estimation of the porosity of clay soils using seismic P- and S-wave velocities. Journal of Applied Geophysics 170, 103832 (2019). DOI: https://doi.org/10.1016/j.jappgeo.2019.103832.
  • [26] P. Lindh, P. Lemenkova, Soil contamination from heavy metals and persistent organic pollutants (PAH, PCB and HCB) in the coastal area of Västernorrland, Sweden. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 38 (2), 147-168 (2022). DOI: https://doi.org/10.24425/gsm.2022.141662.
  • [27] Y.M.H. Mustafa, O.S.B. Al-Amoudi, S. Ahmad, M. Maslehuddin, M.H. Al-Malack, Utilization of Portland cement with limestone powder and cement kiln dust for stabilization/solidification of oil-contaminated marl soil. Environmental Science and Pollution Research 28, 3196-3216 (2021). DOI: https://doi.org/10.1007/s11356-020-10590-w.
  • [28] J. Liang, W. Shen, D. Lu, J. Qi, A three-stage strength criterion for frozen soils. Cold Regions Science and Technology 201, 103597 (2022). DOI: https://doi.org/10.1016/j.coldregions.2022.103597.
  • [29] P. Lindh, P. Lemenkova, Shear bond and compressive strength of clay stabilised with lime/cement jet grouting and deep mixing: A case of Norvik, Nynäshamn. Nonlinear Engineering 11 (1), 693-710 (2022). DOI: https://doi.org/10.1515/nleng-2022-0269.
  • [30] K. Li, Q. Li, C. Liu, Impacts of Water Content and Temperature on the Unconfined Compressive Strength and Pore Characteristics of Frozen Saline Soils. KSCE Journal of Civil Engineering 26, 1652-1661 (2022). DOI: https://doi.org/10.1007/s12205-022-1037-x.
  • [31] P. Lindh, P. Lemenkova, Hardening Accelerators (X-Seed 100 BASF, PCC, LKD and SALT) as Strength-Enhancing Admixture Solutions for Soil Stabilization. Slovak Journal of Civil Engineering 31 (1), 10-21 (2023). DOI: https://doi.org/10.2478/sjce-2023-0002.
  • [32] T. Dahlin, M. Svensson, P. Lindh, DC Resistivity and SASW for Validation of Efficiency in Soil Stabilisation Prior to Road Construction. Proceedings EEGS’99, Budapest, Hungary, 1-3 (1999). DOI: https://doi.org/10.3997/2214-4609.201406466.
  • [33] H. Källén, A. Heyden, K. Åström, P. Lindh, Measuring and evaluating bitumen coverage of stones using two dif ferent digital image analysis methods. Measurement 84, 56-67 (2016). DOI: https://doi.org/10.1016/j.measurement.2016.02.007.
  • [34] P. Lindh, P. Lemenkova, Laboratory Experiments on Soil Stabilization to Enhance Strength Parameters for Road Pavement. Transport and Telecommunication Journal 24 (1), 73-82 (2023). DOI: https://doi.org/10.2478/ttj-2023-0008.
  • [35] Forssblad L. Vibratory Soil and Rock Fill Compaction. DYNA-PAC (1981).
  • [36] SIS, Unbound and hydraulically bound mixtures – Part 2: Test methods for laboratory reference density and water content – Proctor compaction. Swedish standard · SS-EN 13286-2:2010 (2010). URL: https://www.sis.se/en/produkter/civil-engineering/road-engineering/road-construction-materials/ssen1328622010/.
  • [37] SIS, Soil, investigation and testing – Proctor-test. Foreign standard – public DIN 18127. (2012). https://www.sis.se/en/produkter/civil-engineering/earthworks-excavations-foundation-construction-underground-works/din18127/.
  • [38] SIS, Geotechnical investigation and testing – Laboratory testing of soil – Part 12: Determination of liquid and plastic limits (ISO 17892-12:2018). https://www.sis.se/en/produkter/environment-health-protection-safety/soilquality-pedology/physical-properties-of-soils/ss-en-iso-17892-122018/.
  • [39] SIS, Geotechnical investigation and testing – Laboratory testing of soil – Part 12: Determination of liquid and plastic limits – Amendment 2 (ISO 17892-12:2018/Amd 2:2022). Swedish standard SS-EN ISO 17892-12:2018/A2:2022 (2022). https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physical-properties-of-soils/ss-en-iso-17892-122018a22022/.
  • [40] SNRA, Unbound pavement layers. General Technical Construction Specifications for Roads. Swedish National Road Administration, Published ln Road 1994:25E, Chapter 5 (1996).
  • [41] Swedish Institute for Standards. SIS: Geotechnical investigation and testing – Laboratory testing of soil – Part 7: Unconfined compression test (ISO 17892-7:2017), 2017. ISO 17892- 7:2017.
  • [42] A. Gomes Correia, J. Tinoco, Advanced tools and techniques to add value to soil stabilization practice. Innovative Infrastructure Solutions 2, 26 (2017). DOI: https://doi.org/10.1007/s41062-017-0084-5.
  • [43] J. Huang, R.B. Kogbara, N. Hariharan, E.A. Masad, D.N. Little, A state-of-the-art review of polymers used in soil stabilization. Construction and Building Materials 305, 124685 (2021). DOI: https://doi.org/10.1016/j.conbuildmat.2021.124685.
  • [44] V. Malapermal Ramdas, P. Mandree, M. Mgangira, S. Mukaratirwa, R. Lalloo, S. Ramchuran, Review of current and future bio-based stabilisation products (enzymatic and polymeric) for road construction materials. Transportation Geotechnics 27, 100458 (2021). DOI: https://doi.org/10.1016/j.trgeo.2020.10045.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acfbe2dd-ece4-4fe6-b3f3-2960ebe9928c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.