PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analysis of the primary and superharmonic contact resonances – Part 2

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results of investigations of non-linear normal contact microvibrations excited by a harmonic force in a system of two bodies in planar contact. The system models, for instance, slide units of machine tools or their positioning systems. The main aim of the computational analysis is to present resonance graphs and time histories obtained with numerical and perturbation methods. Good agreement between the perturbation and numerical results leads to the conclusion that the perturbation solution is correct. The obtained perturbation solution describes well both the primary resonance and the superharmonic resonances. Characteristic phenomena typical for non-linear vibrations are depicted, viz. asymmetry of vibrations, multi-harmonic vibrations, non-elliptical phase portraits, loss of contacts, bending resonance peaks, bi-stabilities, and multi-stability.
Rocznik
Strony
687--696
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
  • University of Technology and Life Sciences in Bydgoszcz, Poland
Bibliografia
  • 1. Awrejcewicz J., 1996, Deterministic Vibrations of Discrete Systems, WNT, Warszawa, Poland [in Polish]
  • 2. Chajkin S.E., Lisovskij L.N., Solomonović A.E., 1939, On the dry friction forces, Doklady Akademii Nauk SSSR, 24, 2, 134-138 [in Russian]
  • 3. Chlebus E., Dybala B., 1999, Modelling and calculation of properties of sliding guide ways, International Journal of Machine Tools and Manufacture, 39, 12, 1823-1839
  • 4. Dhupia J., Powalka B., Katz R., Ulsoy A.G., 2007, Dynamics of the arch-type reconfigurable machine tool, International Journal of Machine Tools and Manufacture, 47, 2, 326-334
  • 5. Fan K.C., Chen H.M., Kuo T.H., 2012, Prediction of machining accuracy degradation of machine tools, Precision Engineering, 36, 2, 288-298
  • 6. Fyrillas M.M., Szeri A.J., 1998, Control of ultra- and subharmonic resonances, Journal of Nonlinear Science, 8, 2, 131-159
  • 7. Grigorova S.R., Tolstoi D.M., 1966, On the resonance descending of friction force, Doklady Akademii Nauk SSSR, 167, 3, 562-563 [in Russian]
  • 8. Grudziński K., Kostek R., 2007, An analysis of nonlinear normal contact microvibrations excited by a harmonic force, Nonlinear Dynamics, 50, 4, 809-815
  • 9. Gutowski P., 2003, Identyfikacja parametrów modeli dynamicznych układów nośnych obrabiarek, Prace Naukowe Politechniki Szczecińskiej, Wydział Mechaniczny, 574 [in Polish]
  • 10. Hess D.P., Soom A., 1991a, Normal vibrations and friction under harmonic loads: Part I – Hertzian contacts, Part II – Rough planar contacts, ASME Journal of Tribology, 113, 1, 80-86
  • 11. Hess D.P., Soom A., 1991b, Normal vibrations and friction under harmonic loads: Part II – Rough planar contact, ASME Journal of Tribology, 113, 1, 87-92
  • 12. Hess D.P., Soom A., 1992, Normal and angular motions at rough planar contacts during sliping with friction, Journal of Tribology, 114, 3, 567-578
  • 13. Hunt K.H., Crossley F.R.E., 1975, Coefficient of restitution interpreted as damping in vibroimpact, ASME Journal of Applied Mechanics, 42, 2, 440-445
  • 14. Huo D., Cheng K., Wardle F., 2010, A holistic integrated dynamic design and modelling approach applied to the development of ultra-precision micro-milling machines, International Journal of Machine Tools and Manufacture, 50, 4, 335-343
  • 15. Kaminskaya V.V., Levina Z.M., Reshetov D.N., 1960, Staninyi korpusnye detali metallorezhushchikh stankov, Mashgiz, Moscow [in Russian]
  • 16. Kligerman Y., 2003, Multiple solutions in dynamic contact problems with friction, Proceedings of STLE/ASME International Tribology Conference, Ponte Vedra Beach, FL, 1-8
  • 17. Kostek R., 2004, Investigations of the normal contact microvibrations and their influences on the reduction of the friction forces in a dynamical system, Ph.D. Thesis, Szczecin University of Technology, Szczecin, Poland [in Polish]
  • 18. Kostek R., 2013a, An analysis of the primary and the superharmonic contact resonances – Part 1, Journal of Theoretical and Applied Mechanics, 51, 2, 475-486
  • 19. Kostek R., 2013b, Direct numerical methods dedicated to second-order ordinary differential equations, Applied Mathematics and Computation, 219, 19, 10082-10095
  • 20. Marchelek K., 1974, Dynamika obrabiarek, WNT Warszawa [in Polish]
  • 21. Martins J.A.C., Oden J.T., Sim ̄oes F.M.F., 1990, A study of static and kinetic friction, International Journal of Engineering Science, 28, 1, 29-94
  • 22. Moradi H., Bakhtiari-Nejad F., Movahhedy M.R., Ahmadian M.T., 2010, Nonlinear behaviour of the regenerative chatter in turning process with a worn tool: Forced oscillation and stability analysis, Mechanism and Machine Theory, 45, 8, 1050-1066
  • 23. Nayak P.R., 1972, Contact vibrations, Journal of Sound and Vibration, 22, 3, 297-322
  • 24. Nayfeh A.H., 1985, Problems in Perturbation, John Wiley & Sons
  • 25. Nayfeh A.H., Mook D.T., 1995, Nonlinear Oscillations, Wiley, New York
  • 26. Neugebauer R., Denkena B., Wegener K., 2007, Mechatronic systems for machine tools, CIRP Annals – Manufacturing Technology, 56, 2, 657-686
  • 27. Parlitz U., Lauterborn W., 1985, Superstructure in the bifurcation set of the Duffing equation x¨ + dx˙ + x + x3 = f cos(ωt), Physics Letters A, 107, 8, 351-355
  • 28. Perret-Liaudet J., 1998, Superharmonic resonance of order two on a sphere-plane contact, Comptes Rendus de l’Acad´emie des Sciences – Series IIB, 326, 12, 787-792
  • 29. Perret-Liaudet J., Rigad E., 2007, Superharmonic resonance of order 2 for an impacting Hertzian contact oscillator: Theory and experiments, ASME Journal of Computational and Nonlinear Dynamics, 2, 2, 190-196
  • 30. Rigaud E., Perret-Liaudet J., 2003, Experiments and numerical results on non-linear vibrations of an impacting Hertzian contact: Part 1: harmonic excitation, Journal of Sound and Vibration, 265, 2, 289-307
  • 31. Shi X., Polycarpou A.A., 2005, Measurement and modelling of normal contact stiffness and contact damping at the meso scale, ASME Journal of Vibration and Acoustics, 127, 4, 52-60
  • 32. Skrodzewicz J., 2003, Influence of the lubricating agent on the properties of contact joints, Journal of Theoretical and Applied Mechanics, 41, 1, 107-118
  • 33. Thomas T. R., 1999, Rough Surfaces, Imperial College Press, UK
  • 34. Thompson J.M.T., Stewart H.B., 2002, Nonlinear Dynamics and Chaos, Wiley, Chichester, UK
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acf3755b-4210-43d5-929d-383fb0b68409
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.