PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A three-way catalyst system for a five-stroke engine

Autorzy
Identyfikatory
Warianty tytułu
PL
Trójfunkcyjny reaktor katalityczny dla silnika z dodatkowym rozprężaniem gazów wylotowych
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of research on the development of an exhaust gas aftertreatment system for a turbocharged five-stroke engine. This engine was designed and constructed at Cracow University of Technology. A characteristic feature of the five-stroke engine is the use of an additional expansion process to increase overall efficiency. A challenge for a catalytic converter is the fact that it has a low exhaust gas temperature. Two three-way catalytic converters were tested – one with a ceramic support and the second with a metal support. The results of the tests showed that the reactor with a ceramic support obtains an acceptable conversion efficiency starting with an exhaust gas temperature of 280°C. For the metal-support reactor, a few percent increase in torque and a decrease in the brake-specific fuel consumption of the engine was obtained; however, the converter itself did not show signs of operation even with an exhaust gas temperature of over 380°C. The performed analyses highlighted directions of further development works in this area.
PL
W artykule przedstawiono efekty badań nad opracowaniem układu oczyszczania spalin dla turbodoładowanego silnika pięciosuwowego, który został zaprojektowany i wykonany na Politechnice Krakowskiej. Cechą charakterystyczną silnika pięciosuwowego jest zastosowanie dodatkowego rozprężania spalin w celu zwiększenia sprawności ogólnej. Wyzwanie dla reaktora katalitycznego stanowi niska temperatura spalin. Badaniom poddano dwa reaktory trójfunkcyjne, z rdzeniem ceramicznym i z rdzeniem metalowym. Wyniki przeprowadzonych prób wskazały, że reaktor ceramiczny uzyskuje akceptowalną sprawność konwersji od temperatury spalin 280°C. Dla reaktora metalowego uzyskano kilkuprocentowy wzrost momentu obrotowego i obniżenie jednostkowego zużycia paliwa silnika, jednak sam reaktor nie wykazywał oznak działania nawet przy temperaturze spalin powyżej 380°C. Przeprowadzone analizy wskazały kierunki dalszych prac rozwojowych w przedmiotowym obszarze.
Rocznik
Strony
149--183
Opis fizyczny
Bibliogr. 49 poz., wykr., tab., il.
Twórcy
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Automobiles and Internal Combustion Engines
Bibliografia
  • [1] Adachi S., Hagihara H., The renewed 4-Cylinder Engine Series for Toyota Hybrid System, Fortschritt-Berichte VDI Reihe 12, vol. 749, 2012, 1–24.
  • [2] Ailloud C., Delaporte B., Schmitz G., Keromnes A., Le Moyne L., Development and Validation of a Five Stroke Engine, SAE Technical Paper 2013-24-0095, 2013, 10.4271/2013-24-0095.
  • [3] Ajanovic A., Biofuels versus food production: Does biofuels production increase food prices?, Energy vol. 36(4), 2011, 2070-2076, 10.1016/j.energy.2010.05.019.
  • [4] Andrych-Zalewska M., Improving the environmental performance of the internal combustion engine by the use in-cylinder catalyst, Combustion Engines, vol. 168(1), 2017, 129–132, 10.19206/CE-2017-120.
  • [5] Brettschneider J., Berechnung des Luftverhältnisses von Luft-Kraftstoff-Gemischen und des Einflusses von Meßfehlern auf Lambda, Bosch Technische Berichte, vol. 6(4), 1979, 177–186.
  • [6] Brooke L., Not dead yet: The resilient ICE looks to 2050, Automotive Engineering, vol. 5(4), 2018, 22–23.
  • [7] Brzeżański M., Mareczek M., Marek W. et al., The realized concept of variable chemical composition fuel gas supply systems, for internal combustion engines, Combustion Engines, vol. 170(3), 2017, 108–114, 10.19206/CE-2017-318.
  • [8] Carberry B., Grasi G., Guerin S., Jayat F. et al., Pre-Turbocharger Catalyst – Fast catalyst light-off evaluation, SAE Technical Paper 2005-01-2142, 2005, 10.4271/2005-01-2142.
  • [9] Chen H.-Y., Chang H.-L., Development of Low Temperature Three-Way Catalysts for Future Fuel Efficient Vehicles, Johnson Matthey Technol. Rev., vol. 59 (1), 2015, 64–67, 10.1595/205651315X686011.
  • [10] Cummins C.L., Internal fire, Carnot Press, Wilsonville 2000.
  • [11] Czerwinski J., Zimmerli Y., Hüssy A. et al., Testing and evaluating real driving emissions with PEMS, Combustion Engines, vol. 173(4), 2018, 17–25, 10.19206/CE-2018-302.
  • [12] Dumböck O., Schutting E., Eichlseder H., Extended expansion linkage engine: a concept to increase the efficiency, Automotive and Engine Technology, vol. 3, 2018, 83–92, 10.1007/s41104-018-0029-9.
  • [13] Eichlseder H., Klüting M., Piock W.F., Grundlagen und Technologien des Ottomotors: Der Fahrzeugantrieb, Springer, Vienna 2008.
  • [14] Fuć P., Merkisz J., Lijewski P. et al., Exhaust emission in NEDC test simulated at a dynamic engine test bed, Combustion Engines, vol. 154(3), 2013, 701–707.
  • [15] Gaines L., The future of automotive lithium-ion battery recycling: Charting a sustainable course, Sustainable Materials and Technologies, vol. 1–2, 2014, 2–7, 10.1016/j.susmat.2014.10.001.
  • [16] Gęca M.S., Rybak A., Hunicz J., A simulation study into the Atkinson cycle engine utilizing adjustable crank mechanism, IOP Conf. Ser.: Mater. Sci. Eng., vol. 421, 042021, 10.1088/1757-899X/421/4/042021.
  • [17] Goto T., Hatamura K., Takizawa S., Hayama N. et al., Development of V6 Miller Cycle Gasoline Engine, SAE Technical Paper 940198, 1994, 10.4271/940198.
  • [18] Goto T., Isobe R., Yamakawa M., Nishida M., The New Mazda Gasoline Engine Skyactiv-G, MTZ Worldwide, vol. 72(6), 2011, 40–47, 10.1365/s38313-011-0063-8.
  • [19] Hedingerm R., Elbert P., Onder C., Optimal Cold-Start Control of a Gasoline Engine, Energies, vol. 10(10), 2017, 1548, 10.3390/en10101548.
  • [20] Hwang I., Lee H., Park H. et al., Hyundai-Kia’s Highly Innovative 1.6L GDI Engine for Hybrid Vehicle, Fortschritt-Berichte VDI, Reihe 12: Verkehrstechnik/Fahrzeugtechnik, vol. 799, 2016, 285–303.
  • [21] Iskra A., Babiak M., Wróblewski E., The problems of piston skirt microgeometry in combustion engines, IOP Conf. Ser.: Mater. Sci. Eng., vol. 148, 2016, 012068, 10.1088/1757-899X/148/1/012068.
  • [22] Jääskeläinen H., Miller Cycle Engines, https://www.dieselnet.com/tech/engine_millercycle.php (access: 09.11.2018).
  • [23] Johnson T.V., Joshi A., Directions in vehicle efficiency and emissions, Combustion Engines, vol. 166(3), 2016, 3–8, 10.19206/CE-2016-306.
  • [24] Kéromnès A., Delaporte B., Schmitz G., Le Moyne L., Development and validation of a 5 stroke engine for range extenders application, Energy Convers. Manag., vol. 82, 2014, 259–267, 10.1016/j.enconman.2014.03.025.
  • [25] Kessels J.T.B.A., Foster D.L., Bleuanus W.A.J., Fuel Penalty Comparison for (Electrically) Heated Catalyst Technology, Oil & Gas Science and Technology – Rev. IFP, vol. 65, No. 1, 2010, 47–54, 10.2516/ogst/2009078.
  • [26] Kruczyński S.W., Danilczyk W., Ograniczanie szkodliwości gazów wylotowych silników spalinowych poprzez zastosowanie reaktorów katalitycznych, MOTROL Motoryzacja i Energetyka Rolnictwa, vol. 9, 2007, 93–102.
  • [27] Leman A.M., Rahman F., Jajuli A., Zakaria S., Feriyanto D., Emission Treatment towards Cold Start and Back Pressure in Internal Combustion Engine against Performance of Catalytic Converter: A Review, MATEC Web of Conferences vol. 87, 2017, 02021, 10.1051/matecconf/20178702021.
  • [28] Li T., Wang B., Zheng B., A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion, Energy Convers. Manage., vol. 123, 2016, 140–152.
  • [29] Lind W.L., Internal-Combustion Engines: Their Principles and Applications to Automobile, Aircraft, and Marine Purposes, Ginn, Boston 1920, 3–4.
  • [30] Malcev V., Bozhenov A., Schwab R., Müther M., High Power Density High Speed Diesel, MTZ industrial, vol. 6(2), 2016, 14–21, 10.1007/s40353-016-0013-7.
  • [31] Miller R.H., Supercharging and internal cooling cycle for high output, ASME Trans. vol. 69(4) 1947, 453–464.
  • [32] Miller R.H, High expansion, spark ignited, gas burning, internal combustion engines, USA Patent 2 773 490, 11 December 1956.
  • [33] Mizuno H., Nissan gasoline engine strategy for higher thermal efficiency, Combustion Engines, vol. 169(2), 2017, 141–145, 10.19206/CE-2017-225.
  • [34] Noga M., Application of VNT Turbocharger in Spark Ignition Engine with Additional Expansion of Exhaust Gases, Technical Gazette vol. 25(6), 2018, 1575–1580, 10.17559/TV-20160211230747.
  • [35] Noga M., Five-stroke Internal Combustion Engine – yesterday, today and tomorrow, IOP Conf. Ser.: Mater. Sci. Eng., vol. 421, 2018, 042058, 10.1088/1757-899X/421/4/042058.
  • [36] Noga M., Selected Issues of the Indicating Measurements in a Spark Ignition Engine with an Additional Expansion Process, Appl. Sci., vol. 7(3), 2017, 295, 10.3390/app7030295.
  • [37] Noga M., Various aspects of research of the SI engine with an additional expansion process, MATEC Web of Conferences, vol. 118, 2017, 00017, 10.1051/matecconf/201711800017.
  • [38] Noga M., Juda Z., Energy efficiency and equivalent CO2 emissions of a light-duty electric vehicle depending on driving distance, IOP Conf. Ser.: Mater. Sci. Eng., vol. 421, 2018, 022023, 10.1088/1757-899X/421/2/022023.
  • [39] Noga M., Sendyka B., Determination of the Theoretical and Total Efficiency of the Five-Stroke SI Engine, Int J Automot Technol., vol. 15(7), 2014, 1083–1089, 10.1007/s12239-014-0112-9.
  • [40] Noga M., Sendyka B., Increase of efficiency of SI engine through the implementation of thermodynamic cycle with additional expansion, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 62(2), 2014, 349–355, 10.2478/bpasts-2014-0034.
  • [41] Noga M., Sendyka B., New design of the five-stroke SI engine, Journal of KONES vol. 20(1), 2013, 239–246, 10.5604/12314005.1136161.
  • [42] Pace L., Presti M., An Alternative Way to Reduce Fuel Consumption During Cold Start: The Electrically Heated Catalyst, SAE Technical Paper 2011-24-0178, 2011, 10.4271/2011-24-0178.
  • [43] Pielecha I., Cieślik W., Borowski P. et al., The development of combustion engines for hybrid drive systems, Combustion Engines, vol. 158(3), 2014, 23–35.
  • [44] Pielecha I., Cieślik W., Szałek A., The use of electric drive in urban driving conditions using a hydrogen powered vehicle – Toyota Mirai, Combustion Engines, vol. 172(1), 2018, 51–58, 10.19206/CE-2018-106.
  • [45] Sass F., Geschichte des deutschen Verbrennungsmotorenbaues – Von 1860 bis 1918, Springer, Berlin-Göttingen-Heidelberg 1962.
  • [46] Shuai S., Ma X., Li Y. et al., Recent Progress in Automotive Gasoline Direct Injection Engine Technology, Automot. Innov., vol. 1(2), 2018, 95–113,10.1007/s42154-018-0020-1.
  • [47] Theis J., Getsoian A., Lambert C., The Development of Low Temperature Three-Way Catalysts for High Efficiency Gasoline Engines of the Future, SAE Int. J. Fuels Lubr., vol. 10(2), 2017, 583–592, 10.4271/2017-01-0918.
  • [48] Wojciechowski K.T., Merkisz J., Fuć P. et al., Prototypical thermoelectric generator for waste heat conversion from combustion engines, Combustion Engines, vol. 154(3), 2013, 60–71.
  • [49] Żmudka Z., Postrzednik S., Przybyła G., Realization of the Atkinson-Miller cycle in spark-ignition engine by means of the fully variable inlet valve control system, Archives of Thermodynamics, vol. 35 (3), 2014, 191–205, 10.2478/aoter-2014-0029.
Uwagi
EN
Section "Mechanics"
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acec241a-41f1-4f3e-bda0-cbca6c05844c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.