PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of different composite mixtures (PLA/HA) manufactured with additive laser technology on the ability of S. aureus and P. aeruginosa to form biofilms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Staphylococcus aureus (Gram-positive coccus) and Pseudomonas aeruginosa (Gram-negative bacterium) are the leading etiologic agents of biofilm-related, life-threatening infections in patients after orthopaedic implantations. The aim of the present paper is to estimate the ability of these two bacterial strains to form a biofilm on bioresorbable composites manufactured from polylactide (PLA) and hydroxyapatite (HA) with the use of Selective Laser Sintering (SLS) method. Methods: Microbiological tests were conducted on two variants of a solid specimen made with additive laser technology. Samples with different content of hydroxyapatite were made, with appropriate manufacturing parameters to ensure stability of both composite ingredients. The geometry of samples was obtained by technical computed tomography. Microbiological tests determined the number of bacterial cells after incubation. Results: The results indicate significantly decreased ability of S. aureus and P. aeruginosa to form biofilms on the surface of materials with higher content of hydroxyapatite ceramics. Conclusions: The data may be useful for future applications of SLS technology in the production of bioresorbable PLA/HA medical implants
Rocznik
Strony
101--106
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Wrocław University of Science and Technology, Wrocław, Poland
autor
  • Wrocław Medical University, Wrocław, Poland
  • Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
  • [1] BAGNO A., DETTIN M., GAMBARETTO M., TONIN L., DI BELLO C., Strategy to enhance the osseointegration process: synthetic peptides improving osteoblast adhesion on implant surface, Acta Bioeng. Biomech., 2003, 5(1), 35–44.
  • [2] BAHATIA S.K., Biomaterials for Clinical Applications, Springer, 2010.
  • [3] BAZAKA K., JACOB M.V., CRAWFORD R.J., IVANOVA E.P., Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms, Applied Microbiology and Biotechnology, 2012, 95(2), 299–311.
  • [4] BJARNSHOLT T., Biofilm Infections, Springer Science, 2011.
  • [5] BROOKS B.D., SINCLAIR K.D., GRAINGER D.W., BROOKS A.E., YAMAMOTO M., A Resorbable Antibiotic-Eluting Polymer Composite Bone Void Filler for Perioperative Infection Prevention in a Rabbit Radial Defect Model, PLoS One, 2015, E 10(3), 1–19.
  • [6] CAMPOCCIA D., TESTONI F., RAVAIOLI S., CANGINI I., MASO A., SPEZIALE P., MONTANARO L., VISAI L., ARCIOLA C., Orthopedic implant-infections. Incompetence of Staphylococcus epidermidis, Staphylococcus lugdunensis and Enterococcus faecalis to invade osteoblasts, J. Biomed. Mater Res., 2015, 104(3), 788–801.
  • [7] COSTERTON J.W., CHENG K.J., GEESEY G.G., LADD T.I., NICKLE J.C., DASGUPTA M., MARRIE T.J., Bacterial biofilm in nature and disease, Annual Review of Microbiology, 1987, 41, 435–464.
  • [8] ELLINGTON J.K., HUDSON M., HUDSON M.C., WEBB L., WEBB L.X., SHERERTZ R., Intracelluar Staphylococcus aureus and antibiotis resistance: implication for treatment of staphylococcal osteomyelitis, J. Orthop. Res., 2006, 24(1), 87–93.
  • [9] FLEMMING H., WINGENDER J., SZEWCZYK U., Biofilm Highlights, Springers Series on Biofilm, 2008.
  • [10] GOLLWITZER H., IBRAHIM K., MEYER H., MITTELMEIER W., BUSCH R., STEMBERGER A., Antibacterial poly(D,L-lactic acid) coating of medical implants using a biodegradable drug delivery technology, The Journal of Antimicrobial Chemotherapy, 2003, 51(3), 585–591.
  • [11] IGNJATOVIC N., USKOKOVIC D., Synthesis and application of hydroxyapatite/polylactide composite biomaterial, Applied Surface Science, 2004, 238(1–4), 314–319.
  • [12] JUNKA A., SZYMCZYK P., SECEWICZ A., PAWLAK A., SMUTNICKA D., ZIÓŁKOWSKI G., BARTOSZEWICZ M., CHLEBUS E., The chemical digestion of Ti6Al7Nb scaffolds produced by Selective Laser Melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm, Acta Bioeng. Biomech., 2016, 18(1), 115–120.
  • [13] KASUGA T., OTA Y., NOGAMI M., ABE Y., Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers, Biomaterials, 2000, 22(1), 19–23.
  • [14] KIM K., LUU Y.K., CHANG C., FANG D., HSIAO B.S., CHU B., HADJIARGYROU M., Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds, Journal of Controlled Release, 2004, 98(1), 47–56.
  • [15] PAVITHRA D., DOBLE M., Biofilm formation, bacterial adhesion and host response on polymeric implants-issues and prevention, Biomedical Materials, 2008, 3(3), 034003.
  • [16] PIELICHOWSKA K., BŁAŻEWICZ S., Bioactive Polymer/Hydroxyapatite (Nano)composites for Bone Tissue Regeneration, Advanced Polymer Science, 2010, 232, 97–207.
  • [17] PIET L., O’FLAHERTY V., MORAN A.P., STOODLEY P., MAHONY T., Biofilms in Medicine, Industry and Environmental Biotechnology: Characteristics, Analysis and Control, Integrated Environmental Technology, 2003.
  • [18] RATNER B.D., HOFFMAN A.S., SCHOEN F.J., LEMONS J.E., Biomaterials Science: An Introduction to Materials in Medicine, Elsevier, 2004.
  • [19] RUSSIAS J., SAIZ E., NALLA R.K., RITCHIE R.O., TOMSIA A.P., Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation, Materials Science and Engineering: C Biomim Supramol Syst., 2006, 26(8), 1289–1295.
  • [20] SZYMCZYK P., JUNKA A., ZIÓŁKOWSKI G., SMUTNICKA D., BARTOSZEWICZ M., CHLEBUS E., The ability of S.aureus to form biofilm on the Ti-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications, Acta Bioeng. Biomech., 2013, 15(1), 69–76.
  • [21] TAN Y., KIEKENS K., KRUTH J.P., VOET A., DEWULF W., Material dependent thresholding for dimensional X-ray computed tomography, International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin 2011.
  • [22] TANG L., EATON J.W., Inflammatory responses to biomaterials, Americal journal of clinical pathology, 1995, 103(4), 466–471.
  • [23] TUAN H.S., HUTMACHER D.W., Application of micro CT and computation modeling in bone tissue engineering, Computer-Aided Design, 2005, 37, 1151–1161.
  • [24] URBAŃSKI W., KRAWCZYK A., DRAGAN S.Ł., KULEJ M., DRAGAN S.F., Influence of cementless cup surface on stability and bone fixation 2 years after total hip arthroplasty, Acta of Bioengineering and Biomechanics, 2012, 14(2), 27–35.
  • [25] VAINIONPÄÄ S., ROKKANEN P., TÖRMÄLÄ P., Surgical applications of biodegradable polymers in human tissues, Progress in Polymer Science, 1989, 14, 679–716.
  • [26] VERHEYEN C.C.P.M., DHERT W.J.A., DE BLIECK-HOGERVORST J.M.A., VAN DER REIJDEN T.J.K., PETIT P.L.C., DE GROOT K., Adherence to a metal, polymer and composite by Staphylococcus aureus and Staphylococcus epidermidis, Biomaterials, 1993, 14(5), 383–391.
  • [27] WANG G., LIU S.J., UENG S.W., CHAN E.C., The release of cefazolin and gentamicin from biodegradable PLA/PGA beads, International Journal of pharmaceutics, 2004, 273(1–2), 203–212.
  • [28] WU G., ZHOU B., BI Y., ZHAO Y., Selective laser sintering technology for customized fabrication of facial prostheses, The Journal of Prosthetic Dentistry, 2008, 100(1), 56–60.
  • [29] ZULUAGA A., GALVIS W., SALDARRIAGA J., Etiologic Diagnosis of chronic Osteomyelitis: A Prospective Study, Arch Intern Med., 2006, 166, 95–100.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aceb7fd4-ba23-422b-8f44-976138bf274f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.