PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnesium Matrix Composite with Open-Celled Carbon Foams Obtained by Powder Metallurgy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The preliminary results of the application of open-celled glassy-carbon foam (Cof) in magnesium matrix composites processed by the powder metallurgy method were presented. For the component consolidation, compaction with vertically-torsional vibration and hot-pressing were applied. For the material characterization, the microstructure examination LM and SEM with EDS was employed and also, the porosity and microhardness were measured. An influence of the carbon foam cells’ size on the composite porosity and microhardness was revealed. Additionally, a generation of a few micrometer thin and differently shaped MgO inclusions was observed. Differences in the oxide phase amount, size and shape in the magnesium matrix measured by the quantitative metallography method in the cross-sectioned composite elements were stated. With an increase of the distance from the composite roller top, an increase of the MgO content and microhardness was noticed.
Twórcy
  • Silesian University of Technology, Institute of Material Science, Department of Material Science and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
autor
  • Silesian University of Technology, Institute of Material Science, Department of Material Science and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
autor
  • Silesian University of Technology, Institute of Material Science, Department of Material Science and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
  • Silesian University of Technology, Institute of Material Science, Department of Material Science and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
Bibliografia
  • [1] R. Daudin, S. Terzi, C. Mallmann, R.S. Martín, P. Lhuissier, E. Boller, Mater. Sci. Eng. A 688, 76 (2017).
  • [2] W. Wle, M. Gupta, NanoWorld J. 2, 78 (2017).
  • [3] G. Parande, V. Manakari, G. K. Meenashisundaram, M. Gupta, Int. J. Mater. Res. 107, 1091 (2016).
  • [4] E. M. Salleh, H. Zuhailawati, S. Ramakrishnan, B. K. Dhindaw, Metall. Mater. Trans. A 48, 2519 (2017).
  • [5] H. Hu, Scripta Mater. 39, 1998.
  • [6] A. Olszówka-Myalska, J. Myalski, J. Chrapoński, Int. J. Mater. Res. 106, 741 (2015).
  • [7] A. Olszówka-Myalska, J. Myalski, Solid State Phenom. 229, 115 (2015).
  • [8] W. Hufenbach, M. Andrich, A. Langkamp, A. Czulak, J. Mater. Process. Technol. 175, 218 (2006).
  • [9] C. S. Goh, J. Wei, L. C. Lee, M. Gupta, Nanotechnology 17, 7 (2006).
  • [10] K. N. Braszczyńska-Malik, E. Przełożyńska, Inżynieria Materiałowa/Materials Engineering 211, 115 (2016).
  • [11] A. Olszówka-Myalska, Solid State Phenom. 246, 163 (2016).
  • [12] A. Olszówka-Myalska, S. A. McDonald, P. J. Withers, H. Myalska, G. Moskal, Solid State Phenom. 191, 189 (2012).
  • [13] M. Inagaki, J. Qiu, Q. Guo, Carbon 87, 128 (2015).
  • [14] R. Mehta, D. P. Anderson, J. W. Hager, Carbon 41, 2174 (2003).
  • [15] M. Calvo, R. García, S. R. Moinelo, Energ. Fuel 22, 3376 (2008).
  • [16] M. K. Pec, R. Reyes, E. Sánchez, D. Carballar, A. Delgado, J. Santamaría, M. Arruebo, C. Evora, Eur. Cells Mater. 20, 282 (2010).
  • [17] Z. Nowak, M. Nowak, R. B. Pęcherski, M. Potoczek, R. E. Śliwa, Arch. Metall. Mater. 60, 1957 (2015).
  • [18] M. Potoczek, A. Zima, Z. Paszkiewicz, A. Ślosarczyk, Ceram. Int. 35, 2249 (2009).
  • [19] J. Myalski, B. Hekner, A. Posmyk, Tribologia 5, 89 (2015).
  • [20] S. Vaucher, J. Kuebler, O. Beffort, L. Biasetto, F. Zordan, P. Colombo, Key Eng. Mater. 68, 3202 (2008).
  • [21] W. Jiejun, L. Chenggong, W. Dianbin, G. Manchang, Key Eng. Mater. 63, 569 (2003).
  • [22] A. J. Dolata, Materials 10, 1045 (2017).
  • [23] M. Kremzer, M. Dziekońska, M. Sroka, B. Tomiczek, Arch. Metall. Mater. 61, 1255 (2016).
  • [24] A. Mattern, B. Huchler, D. Staudenecker, R. Oberacker, A. Nagel, M. J. Hoffman, J. Eur. Cer. Soc. 24, 3399 (2004).
  • [25] M. R. Nangrejo, X. Bao, M. J. Edirisinghe, J. Eur. Cer. Soc. 20, 1777 (2000).
  • [26] M. I. Pech-Canul, R. N. Katz, M. M. Makhlouf, S. Pickard, J. Mater. Sci. 35, 2169 (2000).
  • [27] B. S. Rao, V. Jarayam, Acta Mater. 49, 2373 (2001).
  • [28] S. Elmori, R. Boukhili, C. San Marchi, A. Mortensen, D. J. Lloyd, J. Mater. Sci. 32, 2131 (1997).
  • [29] M. Thünemann, O. Beffort, S. Kleiner, U. Vogt, Comp. Sci. Tech. 67, 2377 (2007).
  • [30] K. Konopka, M. Szafran, J. Mater. Process. Tech. 175, 266 (2006).
  • [31] J. Michalski, T. Wejrzanowski, S. Gierlotka, J. Bieliński, K. Konopka, T. Kosmac, K. J. Kudrzyłowski, J. Eur. Cer. Soc. 27, 831 (2007).
  • [32] Patent application No. P.422259, A. Olszówka-Myalska, J. Myalski, M. Godzierz.
  • [33] G. Xue-Nan, L. Shuang-Shuang, L. Xiao-Ming, F. Yu-Bo, Front. Mater. Sc. 8, 200 (2014).
  • [34] D. Wenjiang, Regen Biomater. 3, 79 (2016).
  • [35] N. Saito, K. Aoki, Y. Usui, M. Shimizu, K. Hara, N. Narita, N. Ogihara, K. Nakamura, N. Ishigaki, H. Kato, H. Haniu, S. Taruta, Y. A. Kim, M. Endo, Chem. Soc. Rev. 40, 3824 (2011).
  • [36] B. S. Necula, L. E. Fratila-Apachitei, A. Berkani, I. Apachitei, J. Duszczyk, J. Mater. Sci.: Mater. Med. 20, 339 (2009).
  • [37] S. Z. Khalajabadi, M. R. A. Kadir, S. Izman, R. Ebrahimi-Kahrizsangi, Mater. Design 88, 1223 (2015).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ace9e029-8be8-41a6-8ddf-950543f9bc1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.