PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geometrical Accuracy of Threaded Elements Manufacture by 3D Printing Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive processes allow for almost any manufacturing of screw-threaded joint elements. However, this requires knowledge of the geometrical relationships of a threaded itself and the strength of materials from which the screw-threaded joint is made. Thanks to the development of research models and conducting tests related to dimensional accuracy and surface roughness, it was possible to test the models made by MEX process of ABS-M30, PLA, ABS, PETG materials, and PolyJet process from RGD720 polymer material.In the case of measurements carried out on the MarSurf XC20 system, the internal and external thread profile was obtained.Measurements of the surface roughness of the printed models were made using the Taylor Hobson TalyScan 150 profilometer. Based on the obtained surface, following the ISO 25178-2 standard, selected parameters were determined.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-029 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-029 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-029 Rzeszów, Poland
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-029 Rzeszów, Poland
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-029 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-029 Rzeszów, Poland
  • Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Chemistry, Rzeszów University of Technology,Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
  • Faculty of Electrical Engineering and Computer Science, Rzeszów University of Technology, ul. Wincentego Pola 2, 35-021 Rzeszów, Poland
autor
  • Department of Automation and Production Systems, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215, 010 26 Žilina, Slovakia
Bibliografia
  • 1. Boboulos, M. CAD-CAM and Rapid Prototyping Application Evaluation. PhD &Ventus Publishing Aps, 2010.
  • 2. Gdula, M. Empirical Models for Surface Roughness and Topography in 5-Axis Milling Based on Analysis of Lead Angle and Curvature Radius of Sculptured Surfaces. Metals 2020, 10, 932. https://doi.org/10.3390/met10070932.
  • 3. Thompson, M.K., et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP annals 2016; 65: 737–760. https://doi.org/10.1016/j.cirp.2016.05.004.
  • 4. Mazurkow, A., Sikorska-Czupryna, S. The Use of Reverse Engineering to Create FEM Model of Spiroid Gears. Advances In Manufacturing Science And Technology 2020; 44: 71–73. https://doi.org/10.2478/amst-2019-0013.
  • 5. Baggi, E. Reverse engineering applications for recovery of broken or worn parts and re-manufacturing: Three case studies. AdvEngSoftw 2009; 40: 407–418. https://doi.org/10.1016/j.advengsoft.2008.07.003.
  • 6. Leal, R., Barreiros, F.M.; Alves, L.; Romeiro, F.; Vasco, J.C.; Santos, M.; Marto, C. Additive manufacturing tooling for the automotive industry. Int. J. Adv. Manuf. Technol. 2017, 92, 1671–1676. https://doi.org/10.1007/s00170-017-0239-8.
  • 7. Lecklider, T. 3D printing drives automotive innovation. Eval. Eng. 2017; 56: 16–20.
  • 8. Raja, V., Kiran J.F. Reverse Engineering An Industrial Perspective, Springer, New York, NY, USA, 2010.
  • 9. Ciocca, L. et al. A CAD/CAM-prototyped anatomical condylar prosthesis connected to a custommade bone plate to support a fibula free lap. Med BiolEngComput. 2012; 50: 743–749. https://doi.org/10.1007/s11517-012-0898-4.
  • 10. Turek, P., et al. Polymer materials used in medicine processed by additive techniques. Polimery. 2020; 65: 510–515. https://doi.org/10.14314/polimery.2020.7.2.
  • 11. Garcia-Garcia, R., Gonzalez-Palacios, M.A. Method for the geometric modeling and rapid prototyping of involute bevel gears. The International Journal of Advanced Manufacturing Technology. 2018; 98: 645–656. https://doi.org/10.1007/s00170-018-2246-9.
  • 12. Dziubek, T., Oleksy, M. Application of ATOS II optical system in the techniques of rapid prototyping of epoxy resin-based gear models. Polimery. 2017; 62: 44–52. https://doi.org/10.14314/polimery.2017.044.
  • 13. Budzik, G., et al. Analysis of 3D printing parameters of gears for hybrid manufacturing. In: AIP Conference Proceedings. AIP Publishing LLC, 2018, 140005. https://doi.org/10.1063/1.5034997.
  • 14. Ivanov, A.S., et al. Fatigue strength of threaded screws in submersible centrifugal pumps under a pulsating rupture force. Russian Engineering Research. 2015; 35: 571–574. https://doi.org/10.3103/s1068798x15080067.
  • 15. ISO 965-3:2021, ISO general purpose metric screw threads - Tolerances - Part 3: Limit deviations for screw threads;ISO: Geneva, Switzerland, 2021.
  • 16. ISO 262:1998, ISO general purpose metric screw threads - Selected sizes for screws, bolts and nuts;ISO: Geneva, Switzerland, 1998.
  • 17. ISO 724:1993, ISO general purpose metric screw threads - Basic dimensions;ISO: Geneva, Switzerland, 1993.
  • 18. ISO 68-1:1998, ISO general purpose screw threads - Basic profile - Part 1: Metric screw threads;ISO: Geneva, Switzerland, 1998.
  • 19. Leach, R.K., Bourell, D., Carmignato, S., Donmez, A., Senin, N., Dewulf, W. Geometrical metrology for metal additive manufacturing. CIRP annals. 2019; 68: 677–700. https://doi.org/10.1016/j.cirp.2019.05.004.
  • 20. Kechagias, J., Stavropoulos, P., Koutsomichalis, A., Ntintakis, I., Vaxevanidis, N. Dimensional accuracyoptimization of prototypes produced by PolyJet direct 3D printing technology. Adv. Eng. Mech. Mater. 2014; 61–65. Available online: http://inase.org/library/2014/santorini/bypaper/MECHANICS/MECHANICS-07.pdf (accessed on 10 December 2020).
  • 21. Chen, L., Lin, W.-S., Polido, W.D., Eckert, G.J., Morton, D. Accuracy, Reproducibility, and DimensionalStability ofAdditively Manufactured Surgical Templates. J. Prosthet. Dent. 2019; 122: 309–314. https://doi.org/10.1016/j.prosdent.2019.02.007.
  • 22. Turek, P., Budzik, G., Przeszłowski, Ł. Assessing the Radiological Density and Accuracy of Mandible Polymer Anatomical Structures Manufactured Using 3D Printing Technologies. Polymers. 2020;
  • 12: 2444. https://doi.org/10.3390/polym12112444 23. Gibson, I., Rosen, D.W., Stucker, B. Additive Manufacturing Technologies; Springer: New York, NY, USA, 2014.
  • 24. Budzik, G., Woźniak, J., Paszkiewicz, A., Przeszłowski, Ł., Dziubek, T., Dębski, M. Methodology for the Quality Control Process of Additive Manufacturing Products Made of Polymer Materials. Materials 2021; 14: 2202. https://doi.org/10.3390/ma14092202.
  • 25. Kozior, T., Adamczak, S. Amplitude Surface Texture Parameters of Models Manufactured by FDM Technology. In The International Symposium for Production Research; Springer: Cham, Switzerland 2018; 208–217. https://doi.org/10.1007/978-3-319-92267-6_17.
  • 26. Fox, J.C., Moylan, S.P., Lane, B.M. Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing. Procedia CIRP 2016; 45: 131–134. https://doi.org/10.1016/j.procir.2016.02.347.
  • 27. Jamshidinia, M., Kovacevic, R. The in fluence of heat accumulation on the surface roughness in powder-bed additive manu-facturing. Surf. Topogr. Metrol. Prop. 2015; 3: 014003. https://doi.org/10.1088/2051-672x/3/1/014003.
  • 28. Turner, B.N., Gold, S.A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp. J. 2015; 21: 250–261. https://doi.org/10.1108/rpj-02-2013-0017.
  • 29. Kawalec, A., Magdziak, M. Usability assessment of selected methods of optimization for some measurement task in coordinate measurement technique. Measurement 2012; 45: 2330–2338. https://doi.org/10.1016/j.measurement.2011.09.022.
  • 30. Turek, P., Budzik, G., Sęp, J., Oleksy, M., Józwik, J., Przeszłowski, Ł., Paszkiewicz, A., Kochmański, Ł., Żelechowski, D. An Analysis of the Casting Polymer Mold Wear Manufactured Using PolyJet Method Based on the Measurement of the Surface Topography. Polymers 2020; 12: 3029. https://doi.org/10.3390/polym12123029.
  • 31. Saqib, S.; Urbanic, J. An experimental study to determine geometric and dimensional accuracy impact factors for fused deposition modelled parts. In Enabling manufacturing competitiveness and economic sustainability (pp. 293–298). Springer, Berlin, Heidelberg, 2012.
  • 32. Pisula, J.; Dziubek, T.; Przeszłowski Ł. A comparison of the accuracy of bevel gear teeth obtained by means of selected RP techniques and the removal machining method. Machine Dynamics Research 2016; 40: 147–161. http://mdr.simr.pw.edu.pl/index.php/MDR/article/view/200/182.
  • 33. Turek, P., Budzik, G. Estimating the Accuracy of Mandible Anatomical Models Manufactured Using Material Extrusion Methods. Polymers. 2021; 13(14): 2271. https://doi.org/10.3390/polym13142271
  • 34. Brajlih, T., Tasic, T., Drstvensek, I., Valentan, B., Hadzistevic, M., Pogacar, V., Acko, B. Possibilities of using three-dimensional optical scanning in complex geometrical inspection. Strojniškivestnik Journal of Mechanical Engineering 2011; 57: 826–833. https://doi.org/10.5545/sv-jme.2010.152
  • 35. Bazan, A., Turek, P., Przeszłowski, Ł. Assessment of InfiniteFocus system measurement errors in testing the accuracy of crown and tooth body model. Journal of Mechanical Science and Technology 2021; 35: 1167–1176. https://doi.org/10.1007/s12206-021-0230-z
  • 36. Michaud, M. CATIA Core Tools: Computer Aided Three-Dimensional Interactive Application. McGraw-Hill Education, 2012.
  • 37. ISO 21920-3:2022 Geometrical Product Specifications (GPS) — Surface texture: Profile - Part 3: Specification operators ; ISO: Geneva, Switzerland, 2022.
  • 38. ISO 25178-2:2022 Geometrical Product Specifications (GPS). In Surface Texture: Areal - Part 2: Terms, Definitions and Surface Texture Parameters; ISO: Geneva, Switzerland, 2022.
  • 39. Bickford, J. Handbook of Bolts and Bolted Joints, CRC Press, Boca Raton, 1998.
  • 40. Childs, T.H.C. (ed.) Mechanical Design. Theory and Applications (Third Edition), Butterworth-Heinemann, Oxford, 2021.
  • 41. ISO 965-1:2013 ISO general purpose metric screw threads – Tolerances – Part 1: Principles and basic data; ISO: Geneva, Switzerland, 2013.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ace4e7c3-c74e-4e15-9dc4-7422406b999c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.