PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using X-ray diffraction in characterization of bone remodeling and nanocomposites in ovariectomized rats osteopenia model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sedentary lifestyle and physiological menopause are among the risk factors of osteopenia, especially in elderly people. However, bone mineral density decrease can also be observed in young individuals, for instance, due to deficiency of female sex hormones after surgical interventions, particularly ovariectomy. Our research enabled us to assess the efficacy of whole-body vibration in preventing the loss of bone mineral density in the ovariectomy rat osteopenia model. Thus, whole-body vibration with acceleration level 0.3 g and frequency 50 Hz was used on young female rats, which had been subjected to ovariectomy (n = 18). It had been conducted for 24 weeks, exposure time – 30 minutes per day, 5 times a week. Assessment of mineral component loss of the tibia was performed by means of X-ray diffraction. Bone remodeling was assessed by determining hormones: parathyroid hormone and calcitonin, Ca and P in the blood. X-ray diffraction is an effective method, which enables the evaluation a nanocomposites structure of the bone tissue in the experiment. In the article, we applied this method to determine the loss of bone mineral mass after ovariectomy and the impact of wholebody vibration under such conditions. In the ovariectomy group, the volume of a mineral component significantly decreased starting already from the 16th week (р<0.05) versus control. However, in the group with ovariectomy + wholebody vibration, the loss of a mineral component was insignificant during 8-16 weeks of the investigation, compared with the control group. On the 24th day, the spectrums almost did not differ from ovariectomized rats group. Meanwhile, hormone levels changed in ovariectomized rats group. It should be emphasized that the aforementioned whole-body vibration parameters do not cause severe bone damage or further negative consequences.
Rocznik
Strony
157--163
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Normal Physiology, Danylo Halytsky Lviv National Medical University – Lviv, Ukraine
  • Department of Normal Physiology, Danylo Halytsky Lviv National Medical University – Lviv, Ukraine
  • Department of Toxicological and Analytical Chemistry Danylo Halytsky Lviv National Medical University – Lviv, Ukraine
  • Department of Theoretical and Applied Statistics – Lviv, Ukraine
autor
  • Department of Metal Physics, Ivan Franko National University - Lviv, Ukraine
autor
  • Department of Metal Physics, Ivan Franko National University - Lviv, Ukraine
Bibliografia
  • 1. Akkawi I, Zmerly H. Osteoporosis: current concepts. Joints. 2018;6(2):122-127. https://doi.org/10.1055/s-0038-1660790
  • 2. Cao JJ. Effects of obesity on bone metabolism. Journal of Orthopaedic Surgery and Research. 2011;6(1):30. https://doi.org/10.1186/1749-799X-6-30
  • 3. Eastell R, O'Neill TW, Hofbauer LC, et al. Postmenopausal osteoporosis. Nature Reviews Disease Primers. 2016;2(1):1-16. https://doi.org/10.1038/nrdp.2016.69
  • 4. Sözen T, Özışık L, Başaran NÇ. An overview and management of osteoporosis. European Journal of Rheumatology. 2017;4(1):46. https://doi.org/10.5152/eurjrheum.2016.048
  • 5. Alswat KA. Gender disparities in osteoporosis. Journal of Clinical Medicine Research. 2017;9(5):382. https://doi.org/10.14740/jocmr2970w
  • 6. Hammad LF, Benajiba N. Lifestyle factors influencing bone health in young adult women in Saudi Arabia. African Health Sciences. 2017;17(2):524-531. https://doi.org/10.4314/ahs.v17i2.28
  • 7. Langdahl BL. Osteoporosis in premenopausal women. Current Opinion in Rheumatology. 2017;29(4):410-415. https://doi.org/10.1097/BOR.0000000000000400
  • 8. Lam TP, Ng BKW, Cheung LWH, et al. Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls with adolescent idiopathic scoliosis: a randomized, controlled trial. Osteoporosis International. 2013;24(5):1623-1636. https://doi.org/10.1007/s00198-012-2144-1
  • 9. Pang MY, Lau RW, Yip SP. The effects of whole-body vibration therapy on bone turnover, muscle strength, motor function, and spasticity in chronic stroke: a randomized controlled trial. European Journal of Physical and Rehabilitation Medicine. 2013;49(4):439-450.
  • 10. McGee-Lawrence ME, Wenger KH, Misra S, et al. Whole-body vibration mimics the metabolic effects of exercise in male leptin receptor–deficient mice. Endocrinology. 2017;158(5):1160-1171. https://doi.org/10.1210/en.2016-1250
  • 11. Minematsu A, Nishii Y, Imagita H, Sakata S. Whole body vibration at low-frequency can increase trabecular thickness and width in adult rats. Journal of Musculoskeletal & Neuronal Interactions. 2019;19(2):169.
  • 12. Huang CC, Tseng TL, Huang WC, et al. Whole-body vibration training effect on physical performance and obesity in mice. International Journal of Medical Sciences. 2014;11(12):1218. https://doi.org/10.7150/ijms.9975
  • 13. Bellia A, Salli M, Lombardo M, et al. Effects of whole body vibration plus diet on insulin-resistance in middle-aged obese subjects. International Journal of Sports Medicine. 2014;35(06):511-516. https://doi.org/10.1055/s-0033-1354358
  • 14. Maddalozzo GF, Iwaniec UT, Turner RT, et al. Whole-body vibration slows the acquisition of fat in mature female rats. International Journal of Obesity. 2008;32(9):1348. https://doi.org/10.1038/ijo.2008.111
  • 15. Cvetkovic MM, Baptista JS, Vaz MP. Occupational vibration in urban bus and influence on driver’s lower limbs: a review. U. Porto Journal of Engineering. 2018;4(1):56-66. https://doi.org/10.24840/2183-6493_004.001_0005
  • 16. Bovenzi M, Schust M, Mauro M. An overview of low back pain and occupational exposures to whole-body vibration and mechanical shocks. Med Lav. 2017;108(6):419-433. https://doi.org/10.23749/mdl.v108i6.6639
  • 17. Kostyshyn N, Grzegotsky M, Servetnyk M. Assessment of structural and functional condition of rats bone tissue under the influence of various parameters of vibration. Current Issues in Pharmacy and Medical Sciences. 2018;31(3):148-153. https://doi.org/10.1515/cipms-2018-0029
  • 18. Kostyshyn NM, Kostyshyn LP, Servetnyk MI, Grzegotsky MR. The Peculiarities of Remodelling Muscle Tissue of Rats Under the Vibration Influence. Prilozi. 2019;40(1):59-65. https://doi.org/10.2478/prilozi-2019-0004
  • 19. Clark SM, Iball J. The X-ray crystal analysis of bone. Progress in Biophysics and Biophysical Chemistry: Progress Series. 2016;7:226. https://doi.org/10.1016/S0096-4174(18)30127-6
  • 20. Bunaciu AA, UdriŞTioiu EG, Aboul-Enein HY. X-ray diffraction: instrumentation and applications. Critical Reviews in Analytical Chemistry. 2015;45(4):289-299. https://doi.org/10.1080/10408347.2014.949616
  • 21. Rogers KD, Daniels P. An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials. 2002;23(12):2577-2585. https://doi.org/10.1016/S0142-9612(01)00395-7
  • 22. Piga G, Solinas G, Thompson TJU, et al. Is X-ray diffraction able to distinguish between animal and human bones? Journal of Archaeological Science. 2013;40(1):778-785. https://doi.org/10.1016/j.jas.2012.07.004
  • 23. Tadano S, Giri B. X-ray diffraction as a promising tool to characterize bone nanocomposites. Science and Technology of Advanced Materials. 2012;12(6):064708. https://doi.org/10.1088/1468-6996/12/6/064708
  • 24. Compston JE. Sex steroids and bone. Physiological reviews. 2001;81(1):419-447. https://doi.org/10.1152/physrev.2001.81.1.419
  • 25. Manolagas SC, Kousteni S, Jilka RL. Sex steroids and bone. Recent Progress in Hormone Research. 2002;57:385-410. https://doi.org/10.1210/rp.57.1.385
  • 26. Khosla S, Monroe DG. Regulation of bone metabolism by sex steroids. Cold Spring Harbor Perspectives in
  • 27. Singh-Ospina N, Maraka S, Rodriguez-Gutierrez R, et al. Effect of sex steroids on the bone health of transgender individuals: a systematic review and meta-analysis. The Journal of Clinical Endocrinology & Metabolism. 2017;102(11):3904-3913. https://doi.org/10.1210/jc.2017-01642
  • 28. Hlaing T.T., Compston J.E. Biochemical markers of bone turnover–uses and limitations. Annals of Clinical Biochemistry. 2014;51(2):189-202. https://doi.org/10.1177/0004563213515190
  • 29. Morris H.A., Eastell R., Jorgensen N.R., et al. Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clinica Chimica Acta. 2017;467:34-41. https://doi.org/10.1016/j.cca.2016.06.036
  • 30. Gozdzialska A, Jaskiewicz J, Knapik-Czajka M, et al. Association of calcium and phosphate balance, vitamin D, PTH, and calcitonin in patients with adolescent idiopathic scoliosis. Spine. 2016;41(8):693-697. https://doi.org/10.1097/BRS.0000000000001286
  • 31. Martin TJ, Sims NA. Calcitonin physiology, saved by a lysophospholipid. Journal of Bone and Mineral Research. 2015;30(2):212-215. https://doi.org/10.1002/jbmr.2449
  • 32. Felsenfeld AJ, Barton SL. Calcitonin, the forgotten hormone: does it deserve to be forgotten?. Clinical Kidney Journal. 2015;8(2):180-187. https://doi.org/10.1093/ckj/sfv011
  • 33. Florencio-Silva R, da Silva Sasso GR, Sasso-Cerri E, et al. Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Research International. 2015:421746. https://doi.org/10.1155/2015/421746
  • 34. Clarke MV, Russell PK, Findlay DM, et al. A role for the calcitonin receptor to limit bone loss during lactation in female mice by inhibiting osteocytic osteolysis. Endocrinology. 2015;156(9):3203-3214. https://doi.org/10.1210/en.2015-1345
  • 35. Wysolmerski JJ. Parathyroid Hormone, Parathyroid Hormone–Related Protein, and Calcitonin. In Vitamin D. Academic Press. 2018; 849-870.
  • 36. Klemm KM, Klein MJ. Biochemical markers of bone metabolism. Henry's Clinical Diagnosis and Management by Laboratory Methods E-Book, 2017; 188.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acdb1b54-9d01-496b-bf39-51dec250072b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.