PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and Microhardness of Piston Alloy Al-10Si-2Cu Irradiated by Pulsed Electron Beam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the research data on structure, phase composition, defect substructure state, and microhardness of surface layers in the piston alloy Al-10wt%Si-2wt%Cu irradiated by an electron beam with various energy densities and pulse times. An important finding to emerge from the study is that the processing by an electron beam with an energy density of 10 J/cm2 brings about slight surface melting, whereas a weak thermal impact of an electron beam hardly changes the phase composition. Once an energy density of an electron beam is set 30 J/cm2, intermetallic compounds dissolve and numerous micropores arise. Irradiating by an electron beam with an energy density of 50 J/cm2, randomly located microcracks are detected on the treated surface with no regard to a pulse time. A structure of high-speed cellular crystallization with cells from 500 to 600 nm forms in the surface layer. A thickness of the modified layer is related to a beam energy density. As a beam energy density goes up, a thickness of a high-speed cellular crystallization layer increases. Atoms of Si, Cu, Ni, as well as a small quantity of Fe and Mg are detected in the surface, in thin layers surrounding crystallization cells. In a layer 60-80 μm below the irradiated surface, in material between high-speed crystallization cells, there are Si atoms and an insignificant number of Cu atoms. An analysis of a deeper material part has shown a structure similar to the as cast alloy. A drop of microhardness – if compared with the as cast material – is reported at an energy density of 10 J/cm2 because an energy amount supplied by an electron beam to the alloy surface is insufficient for melting of the material and dissolution of the intermetallic phase. A raise of a beam energy density up to 20-50 J/cm2 causes a max increase of microhardness up to 1.13 GPa for 40 J/cm2, 50 μs, and up to 1.16 GPa for 40 J/cm2, 200 μs.
Rocznik
Strony
92--98
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • Siberian State Industrial University, Russia
autor
  • Samara National Research University, Russia
autor
  • Russian Academy of Sciences, Siberian Branch, Institute of High Current Electronics, Russia
autor
  • Siberian State Industrial University, Russia
autor
  • Russian Academy of Sciences, Siberian Branch, Institute of High Current Electronics, Russia
Bibliografia
  • [1] Hongfang, L., Lijun, G., Mohammadamin, A. & Kun, H. (2019). Oil and Gas 4.0 era: A systematic review and outlook. Computers in Industry. 111, 68-90. DOI: 10.1016/j.compind.2019.06.007.
  • [2] Szwaja, S., Ansari, E., Rao, S., Szwaja, M., Grab-Rogalinski, K., Naber, J.D. & Pyrc, M. (2018). Influence of exhaust residuals on combustion phases, exhaust toxic emission and fuel consumption from a natural gas fueled spark-ignition engine. Energy Conversion and Management. 165, 440-446. DOI: 10.1016/j.enconman.2018.03.075.
  • [3] Agarwal, A.K., Ateeq, B., Gupta, T., Singh, A.P., Pandey, S.K., Sharma, N., Agarwal, R.A., Gupta, N.K., Sharma, H., Jain, A. & Shukla, P.C. (2018). Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions?. Environmental Pollution. 239, 499-511. DOI: 10.1016/j.envpol.2018.04.028.
  • [4] Norhafana, M., Noor, M.M., Hairuddin, A.A., Harikrishnan, S., Kadirgama, K. & Ramasamy, D. (2020). The effects of nano-additives on exhaust emissions and toxicity on mankind. Materials Today: Proceedings. 22(3), 1181-1185. DOI: 10.1016/j.matpr.2019.12.110.
  • [5] Omrani, M., Goriaux, M., Liu, Y., Martinet, S., Jean-Soro, L. & Ruban, V. (2020). Platinum group elements study in automobile catalysts and exhaust gas samples. Environmental Pollution. 257, 113477. DOI: 10.1016/j.envpol.2019.113477.
  • [6] Gremminger, A., Pihl, J., Casapu, M., Grunwaldt, J., Toops, T.J. & Deutschmann, O. (2020). PGM based catalysts for exhaust-gas after-treatment under typical diesel, gasoline and gas engine conditions with focus on methane and formaldehyde oxidation. Applied Catalysis B: Environmental. 265, 118571. DOI: 10.1016/j.apcatb.2019.118571.
  • [7] Long, R., Zhao, Y., Luo, Z. & Liu, W. (2020). Alternative thermal regenerative osmotic heat engines for low-grade heat harvesting. Energy. 195, 117042. DOI: 10.1016/j.energy.2020.117042.
  • [8] Erdiwansyah, Mamat, R., Sani, M.S.M., Sudhakar, K., Kadarohman, A. & Sardjono, R.E. (2019). An overview of Higher alcohol and biodiesel as alternative fuels in engines. Energy Reports. 5, 467-479. DOI: 10.1016/j.egyr. 2019.04.009.
  • [9] Fayad, M.A., Tsolakis, A. & Martos, F.J. (2020). Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine. Renewable Energy. 148, 962-969. DOI: 10.1016/j.renene.2019.10.079.
  • [10] Sadeq, A.M., Bassiony, M.A., Elbashir, A.M., Ahmed, S.F. & Khraisheh, M. (2019). Combustion and emissions of a diesel engine utilizing novel intake manifold designs and running on alternative fuels. Fuel. 255, 115769. DOI: 10.1016/j.fuel.2019.115769.
  • [11] Mohd Noor, C.W., Noor, M.M. & Mamat, R. (2018). Biodiesel as alternative fuel for marine diesel engine applications: A review. Renewable and Sustainable Energy Reviews. 94, 127-142. DOI: 10.1016/j.rser.2018.05.031.
  • [12] Song, C.H. & Aaldering, L.J. (2019). Strategic intentions to the diffusion of electric mobility paradigm: The case of internal combustion engine vehicle. Journal of Cleaner Production. 230, 898-909. DOI: 10.1016/j.jclepro. 2019.05.126.
  • [13] Chung, C.Т., Wu, C.-H. & Hung, Y.-H. (2020). Evaluation of driving performance and energy efficiency for a novel full hybrid system with dual-motor electric drive and integrated input- and output-split e-CVT. Energy. 191, 116508. DOI: 10.1016/j.energy.2019.116508.
  • [14] Verhelst, S. & Wallner, T. (2009). Hydrogen-fueled internal combustion engines. Progress in Energy and Combustion Science. 35(6), 490-527. DOI: 10.1016/j.pecs.2009.08.001.
  • [15] Takagi, Y., Oikawa, M., Sato, R., Kojiya, Y. & Mihara, Y. (2019). Near-zero emissions with high thermal efficiency realized by optimizing jet plume location relative to combustion chamber wall, jet geometry and injection timing in a direct-injection hydrogen engine. International Journal of Hydrogen Energy. 44(18), 9456-9465. DOI: 10.1016/j.ijhydene.2019.02.058.
  • [16] Luo, Q., Hu, J.-B., Sun, B., Liu, F., Wang, X., Li, C. & Bao, L. (2019). Effect of equivalence ratios on the power, combustion stability and NOx controlling strategy for the turbocharged hydrogen engine at low engine speeds. International Journal of Hydrogen Energy. 44(31), 17095-17102. DOI: 10.1016/j.ijhydene.2019.03.245.
  • [17] Zareei, J. & Rohani, A. (2020). Optimization and study of performance parameters in an engine fueled with hydrogen. International Journal of Hydrogen Energy. 45(1), 322-326. DOI: 10.1016/j.ijhydene.2019.10.250.
  • [18] Zhu, H. & Duan, J. (2019). Research on emission characteristics of hydrogen fuel internal combustion engine based on more detailed mechanism. International Journal of Hydrogen Energy. 44(11), 5592-5598. DOI: 10.1016/j.ijhydene.2018.08.044.
  • [19] Zhu, H., Zhang, Y., Liu, F. & Wei, W. (2020). Effect of excess hydrogen on hydrogen fueled internal combustion engine under full load. International Journal of Hydrogen Energy. DOI: 10.1016/j.ijhydene.2019.12.022.
  • [20] Xu, P., Ji, C., Wang, S., Bai, X., Cong, X., Su, T. & Shi, L. (2019). Realizing low emissions on a hydrogen-fueled spark ignition engine at the cold start period under rich combustion through ignition timing control. International Journal of Hydrogen Energy. 44(16), 8650-8658. DOI: 10.1016/j.ijhydene.2019.01.275.
  • [21] Yuan, C., Jing, Y., Liu, C. & He, Y. (2019) Effect of variable stroke on fuel combustion and heat release of a free piston linear hydrogen engine. International Journal of Hydrogen Energy. 44(36), 20416-20425. DOI: 10.1016/j.ijhydene.2019.05.232.
  • [22] Millikin, M. (2006, February). Hydrogen Internal Combustion Engines as a Transitionary Technology, Hydrogen Internal Combustion Engine Symposium. Retrieved February, 2006, from https://www.greencarcongress.com/2006/02/hydrogen_intern.html
  • [23] Esmeralda, A.G., Arenas-García, H., Rodríguez, A.F., Talamantes-Silva, J., Torres, R., Garza-Montes-de-Oca, N.F. & Colás, R. (2019). Thermal diffusivity of Al-Si cast alloys for internal combustion engines. Thermochimica Acta. 675, 172-179. DOI: 10.1016/j.tca.2019.03.020.
  • [24] Rea, J.E., Oshman, C.J., Singh, A., Alleman, J., Buchholz, G., Parilla, P.A., Adamczyk, J.M., Fujishin, H.-N., Ortiz, B.R., Braden, T., Bensen, E., Bell, R.T., Siegel, N.P., Ginley, D.S. & Toberer, E.S. (2019). Prototype latent heat storage system with aluminum-silicon as a phase change material and a Stirling engine for electricity generation. Energy Conversion and Management. 199, 111992. DOI: 10.1016/j.enconman.2019.111992.
  • [25] Liu, K., Chen, X., Shen, Q., Pan, Z., Singh, R.A., Jayalakshmi, S. & Konovalov, S. (2020). Microstructural evolution and mechanical properties of deep cryogenic treated Cu–Al–Si alloy fabricated by Cold Metal Transfer (CMT) process. Materials Characterization. 159, 110011. DOI: 10.1016/j.matchar.2019.110011.
  • [26] Kolonakov, A.A., Kukharenko, A.V., Deev, V.B. & Abaturova, A.A. (2015). Structure and chemical composition of the AK12MMgN piston alloy fabricated based on various charges. Russian Journal of Non-Ferrous Metals. 56(4), 428-433. DOI: 10.3103/S1067821215040094.
  • [27] Yan, P., Zou, J., Zhang, C. & Grosdidier, T. (2020). Surface modifications of a cold rolled 2024 Al alloy by high current pulsed electron beams. Applied Surface Science. 504, 144382. DOI: 10.1016/j.apsusc.2019.144382.
  • [28] Bian, H., Aoyagi, K., Zhao, Y., Maeda, C., Mouri, T. & Chiba, A. (2020). Microstructure refinement for superior ductility of Al–Si alloy by electron beam melting. Additive Manufacturing. 32, 100982. DOI: 10.1016/j.addma.2019.100982.
  • [29] Jung, A., Buchwalder, A., Hegelmann, E., Hengst, P. & Zenker, R. (2018). Surface engineering of spray-formed aluminium-silicon alloys by plasma nitriding and subsequent electron beam remelting. Surface and Coatings Technology. 335, 166-172. DOI: 10.1016/j.surfcoat.2017.12.016.
  • [30] Nahmany, M., Hadad, Y., Aghion, E., Stern, A. & Frage, N. (2019). Microstructural assessment and mechanical properties of electron beam welding of AlSi10Mg specimens fabricated by selective laser melting. Journal of Materials Processing Technology. 270, 228-240. DOI: 10.1016/j.jmatprotec.2019.02.025.
  • [31] Deqiang,W., Xiaobing, W., Rong, W., Hongyang, C. (2018). Surface modification of 5CrMnMo steel with continuous scanning electron beam process. Vacuum. 149, 118-123. DOI: 10.1016/j.vacuum.2017.12.032.
  • [32] Xuewei, T., Zhengjun, Y., Shasha, Z., Jun, L., Jing, L. (2018) Investigation on microstructure, mechanical and tribological properties of in-situ (TiB+TiC)/Ti composite during the electron beam surface melting. Surface and Coatings Technology. 337, 418-425 DOI: 10.1016/j.surfcoat.2018.01.054.
  • [33] Panin, S.V., Vlasov, I.V., Sergeev, V.P., Maruschak, P.O., Sunder, R., Ovechkin, B.B. (2015) Fatigue life improvement of 12Cr1MoV steel by irradiation with Zr+ ion beam. International Journal of Fatigue. 76, 3-10. DOI 10.1016/j.ijfatigue.2014.10.011.
  • [34] Panin, S.V., Maruschak, P.O., Vlasov, I.V., Sergeev, V.P., Ovechkin, B.B., Neifeld, V.V. (2016) Impact toughness of 12Cr1MoV steel. Part 2 - Influence of high intensity ion beam irradiation on energy and deformation parameters and mechanisms of fracture. Theoretical and Applied Fracture Mechanics. 83, 82-92. DOI: 10.1016/j.tafmec.2015.12.009.
  • [35] Konovalov, S., Gromov, V., Zaguliyaev, D., Ivanov, Y., Semin, A. & Rubannikova, J. (2019). Dispersion of Al-Si Alloy Structure by Intensive Pulsed Electron Beam. Archives of Foundry Engineering. 19(2), 79-84. DOI: 10.24425/afe.2019.127120.
  • [36] Ivanov, Yu.F., Zaguliaev, D.V., Nevskii, S.A., Gromov, V.E., Sarychev, V.D. & Semin, A.P. (2019). Microstructure and properties of hypoeutectic silumin treated by high-current pulsed electron beams. Progress in Physics of Metals. 20(3), 447-484. DOI: 10.15407/ufm.20.03.447.
  • [37] Gromov, V., Konovalov, S., Ivanov, Y., Zaguliaev, D., Petrikova, E. & Serenkov, Y. (2019). Evolution of structure-phase states of hypoeutectic silumin irradiated by intensive pulse electron beams. Materials Research Express. 6(7), 076574. DOI: 10.1088/2053-1591/ab1683.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acd388d4-7850-4357-9c7b-fb8a039a503c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.