PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of inclusions on bending fatigue strength coefficient the medium carbon steel melted in an electric furnace

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The parameters of high-grade steel are influenced by a combination of factors, including chemical composition and production technology. The impurity content is also a key determinant of the quality of high-grade steel. Inclusions may also play an important role, subject to their type and shape. Inclusions may increase the strength of steel by inhibiting the development of micro-cracks. The analyzed material was one grade of medium-carbon structural steel. The study was performed on 6 heats produced in an industrial plant in 140 ton electric furnaces. The experimental variants were compared in view of the five heat treatment options. The results were presented to account for the correlations between the fatigue strength coefficient during rotary bending, the diameter of and spacing between impurities. The relationship between the fatigue strength and hardness of highgrade steel vs. the quotient of the diameter of impurities and the spacing between impurities was determined. The proposed equations contribute to the existing knowledge base of practices impact of impurities with various diameters and spacing between non-metallic inclusion on fatigue strength.
Rocznik
Strony
88--91
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Oczapowskiego 11 St., 10-957 Olsztyn, Poland
autor
  • University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Oczapowskiego 11 St., 10-957 Olsztyn, Poland
Bibliografia
  • 1.Anderson, C.W., Coles S.G., 2002. The largest inclusions in a piece of steel, Extremes, 5, 237-252.
  • 2.Atkinson, H.V., Shi, G., 2003. Characterization of inclusions in clean steels: a review including the statistics of extremes methods, Progress in Materials Science, 48, 457-520.
  • 3.Dekkers, R., 2002. Thesis, Katholieke Universiteit Leuven, Ph.D., Leuven, Belgium.
  • 4.Ejaz, N., Rizvi, S.A., 2010. Cable failure resulted in the crash of a trainer aircraft, Engineering Failure Analysis, 17, 394-402.
  • 5.Fernandes, M., Pires, J.C., Cheung, N., Garcia, A., 2003. Influence of refining time on nonmetallic inclusions in a low-carbon, silicon-killed steel, Materials Characterization, 51, 301- 308.
  • 6.Genel, K., 2005. Estimation method for the fatigue limit of case hardened steels, Surface & Coatings Technology, 194, 9591-9592.
  • 7.Gigovic-Gekic, A., Oruc, M., Vitez, I., Vujicic B., 2009. Analyse and research of nonmetallic inclusions for steel 100Cr6, Metalurgija, 48, 1, 29-32.
  • 8.Kasatkin, G.N., 2004. Effect of nonmetallic inclusions on the mechanical properties of hydrogenated steels, Materials Science, 40/6, 850-855.
  • 9.Kiessling, R., 1978. Non-metallic inclusions in steel, The Institute of Materials, London, UK.
  • 10.Lipiński, T., Wach, A., 2009. Non-metallic inclusions structure dimension in high quality steel with medium carbon contents, Archives of Foundry Engineering, 9(3), 75-78.
  • 11.Lipiński, T., Wach, A., 2010. The effect of the production process of medium-carbon steel on fatigue strength, Archives of Foundry Engineering, 10(2), 79-82.
  • 12.Lipiński, T., Wach, A., 2014. Size of Non-Metalic Inclusions in High-Grade Medium Carbon Steel, Archives of Foundry Engineering, 14(4), 55-60.
  • 13.Lipiński, T., Wach, A., 2015. Effect of impurities on bending fatigue strength of structural steel, Engineering for Rural Development, 784-789.
  • 14.Lipiński, T., Wach, A., 2015. The Effect of Fine Non-Metallic Inclusions on The Fatigue Strength of Structural Steel, Archives of Metallurgy and Materials, 60(1), 65-69.
  • 15.Majewski, G., Orman, Ł.J., Telejko, M., Radek, N., Pietraszek, J., Dudek A., 2020. Assessment of thermal comfort in the intelligent buildings in view of providing high quality indoor environment, Energies 13(8), 1973.
  • 16.Moiseeva, L.A., Moiseev, B.P., 2007. Composition, Structure, and Sources of Exogenous Inclusions in Steel, Steel in Translation, 37(7), 607-613.
  • 17.Murakami, Y., Endo, M., 1994. Effects of defects, inclusions and inhomogeneities on fatigue strength, Int J Fatigue, 16(3), 163-82.
  • 18.Pietraszek, J., Gądek-Moszczak, A., Radek, N., 2015. The estimation of accuracy for the neural network approximation in the case of sintered metal properties, Recent Developments in Computational Collective Intelligence, 125-134.
  • 19.Pietraszek, J., Skrzypczak-Pietraszek, E., 2014. The Optimization of the Technological Process with the Fuzzy Regression, Advanced Materials Research, 874, 151-155.
  • 20.Radek, N., Broncek, J., Fabian, P., Pietraszek, J., Dudek A., 2017. Tribological properties of electro-spark deposited coatings after laser treatment, Proc. 58th Int. Conf. Machine Design Departments (ICMD 2017), 129, 314-319.
  • 21.Selejdak, J., Ulewicz, R., Ingaldi M., 2014. The evaluation of the use of a device for producing metal elements applied in civil engineering, in Chosen Metallurgical Company, 25th International Conference on Metallurgy and Materials, Ostrava, Tanger, 1882-1888.
  • 22.Steiner, D., Petrovic, M., Jenko, M., Hraes, M., 2003. Study of the morphology of non-metallic inclusions in non-oriented electrical steel containing Cu and Se, Vacuum 71, 33-40.
  • 23.Ulewicz, R., Novy, F. 2017. Fatigue life of high strength steel for cold forming, Metalurgija 56(1-2), 115-118.
  • 24.Ulewicz, R., Mazur, M., 2013. Fatigue testing structural steel as a factor of safety of technical facilities maintenance, Production Engineering Archives, 1(1), 32-34.
  • 25.Ulewicz, R., Mazur, M., Bokůvka, O., 2013. Structure and mechanical properties of fine-grained steels, Periodica Polytechnica Transportation Engineering, 41(2), 111-115.
  • 26.Ulewicz, R., Novy, F., 2016. The influence of the surface condition on the fatigue properties of structural steel, Journal of the Balkan Tribological association, 22(2), 1147-1155.
  • 27.Ulewicz, R., Nový, F., Selejdak, J. Advanced Materials Research, 874, 43-48.
  • 28.Wach, A., 2010. Impact of secondary metallurgy on some properties of structural steel used on machine parts, Ph.D. thesis, Olsztyn.
  • 29.Wrońska, A., Andres, J., Altamer, T., Dudek, A., Ulewicz, R., 2019. Effect of Tool Pin Length on Microstructure and Mechanical Strength of the FSW Joints of Al 7075 Metal Sheets, Communications-Scientific letters of the University of Zilina, 21(3), 40-47.
  • 30.Yang Z.G., Zhang, J.M., Li, S.X., Li, G.Y., Wang, Q.Y., Hui, W.J., Weng, Y.Q., 2006. On the critical inclusion size of high strength steels under ultra-high cycle fatigue, Materials Science and Engineering, A 427, 167-174.
  • 31.Zhang, J.M , Zhanga, J.F., Yang, Z.G., Li, G.Y., Yao, G., Li, S.X., Hui, W.J., Weng, Y.Q., 2005. Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel, Materials Science and Engineering A 394, 126-131.
  • 32.Zhang, J.M., Li, S.X., Yang, Z.G., Li, G.Y., Hui, W.J., Weng, Y.Q., 2007. Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime, International Journal of Fatigue,29, 765- 771.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acd1314b-c815-48f4-b4cd-6d0e3a729839
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.