PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Static liquefaction as a form of material instability in element test simulations of granular soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Statyczne upłynnienie jako forma niestabilności materiału w symulacjach testów elementowych gruntu niespoistego
Języki publikacji
EN
Abstrakty
EN
Static liquefaction is a form of unstable behaviour of granular soil. It is most common in saturated loose sands under monotonically loaded undrained conditions. Predicting static liquefaction using an elastic-plastic model that incorporates the non-associated plastic flow rule and strain hardening is possible. The article briefly describes the unstable behaviour of saturated sand in undrained conditions under a monotonic load. A simple elastic-plastic model with deviatoric hardening and a Drucker-Prager load surface is presented. The constitutive relationships were programmed in a Python script. Simulations of triaxial tests under mixed stress-strain control demonstrated the model’s ability to predict various undrained sand responses, including fully stable responses (no liquefaction) and partial and complete liquefaction under triaxial compression and tension. Predicting static liquefaction is possible by properly selecting the proportions of the parameters involved in plastic potential and loading functions and the parameter A used in the deviatoric hardening rule of hyperbolic type.
PL
Statyczne upłynnienie jest formą niestabilnego zachowania się gruntu niespoistego. Najczęściej występuje w nasyconych piaskach luźnych w warunkach bez odpływu wody obciążonych monotonicznie. Możliwe jest prognozowanie statycznego upłynnienia przy użyciu sprężysto-plastycznego modelu, w którym uwzględnia się niestowarzyszone prawo płynięcia plastycznego i wzmocnienie odkształceniowe. W pracy przedstawiono krótki opis niestabilnego zachowania się piasku nasyconego w warunkach bez odpływu pod obciążeniem monotonicznym. Zaprezentowano prosty model sprężysto-plastyczny ze wzmocnieniem dewiatorowym i powierzchnią obciążenia Druckera-Pragera. Związki konstytutywne zaprogramowane zostały w skrypcie Python. Symulacje testów trójosiowego ściskania i rozciągania i mieszanej kontroli naprężeniowo-odkształceniowej pokazały zdolność modelu do prognozy różnych reakcji piasku w warunkach bez odpływu, w tym braku upłynnienia, częściowego i pełnego upłynnienia.
Słowa kluczowe
Twórcy
  • Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
Bibliografia
  • [1] G. Castro, “Liquefaction and cyclic mobility of saturated sands”, Journal of the Geotechnical Engineering Division, vol. 101, no. 6, pp. 551-569, 1975, doi: 10.1061/AJGEB6.0000173.
  • [2] G. Castro and S.J. Poulos, “Factors affecting liquefaction and cyclic mobility”, Journal of the Geotechnical Engineering Division, vol. 103, no. 6, pp. 501-516, 1977, doi: 10.1061/AJGEB6.0000433.
  • [3] K. Ishihara, “Liquefaction and flow failure during earthquakes”, Géotechnique, vol. 43, no. 3, pp. 351-415, 1993, doi: 10.1680/geot.1993.43.3.351.
  • [4] J.A. Yamamuro and P.V. Lade, “Static liquefaction of very loose sands”, Canadian Geotechnical Journal, vol. 34, no. 6, pp. 905-917, 1997, doi: 10.1139/t97-057.
  • [5] J.A.Yamamuro and P.V. Lade, “Steady state concepts and static liquefaction of silty sands”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 124, no. 9, pp. 868-877, 1998, doi: 10.1061/(ASCE)1090-0241(1998)124:9(868).
  • [6] J.A. Yamamuro and P.V. Lade, “Experiments and modelling of silty sands susceptible to static liquefaction”, Mechanics of Cohesive-Frictional Materials, vol. 4, no. 6, pp. 545-564, 1999, doi: 10.1002/(SICI)1099-1484(199911)4:6<545::AID-CFM73>3.0.CO;2-O.
  • [7] W. Świdziński, Compaction and liquefaction mechanisms of non-cohesive soils. Gdańsk: Wydawnictwo IBW PAN, 2006 (in Polish).
  • [8] A. Sawicki and W. Świdziński, “Modelling the pre-failure instabilities of sand”, Computers and Geotechnics, vol. 37, no. 6, pp. 781-788, 2010, doi: 10.1016/j.compgeo.2010.06.004.
  • [9] M.G. Jefferies, “Nor-Sand: a simple critical state model for sand”, Géotechnique, vol. 43, no. 1, pp. 91-103, 1993, doi: 10.1680/geot.1993.43.1.91.
  • [10] M.G. Jefferies and K. Been, Soil Liquefaction. A critical state approach. London and New York: Taylor & Francis, 2015, doi: 10.1201/b19114.
  • [11] X.S. Li, Y.F. Dafalias, and Z.-L.Wang, “State dependent dilatancy in critical state constitutive modelling of sand”, Canadian Geotechnical Journal, vol. 36, no. 4, pp. 599-611, 1999, doi: 10.1139/t99-029.
  • [12] R. Nova and D.M. Wood, “A constitutive model for sand in triaxial compression”, International Journal of Numerical and Analytical Methods in Geomechanics, vol. 3, no. 3, pp. 255-278, 1979, doi: 10.1002/nag.1610030305.
  • [13] K. Roscoe, A.N. Schofield, and C.P. Wroth, “On the yielding of soils”, Géotechnique, vol. 8, no. 1, pp. 22-53, 1958, doi: 10.1680/geot.1958.8.1.22.
  • [14] P.V. Lade, “Elastoplastic stress-strain theory for cohesionless soil with curved yield surfaces”, International Journal of Solids and Structures, vol. 13, no. 11, pp. 1019-1035, 1977, doi: 10.1016/0020-7683(77)90073-7.
  • [15] M. Pastor, O.C. Zienkiewicz, and A.H.C. Chan, “Generalized plasticity and the modelling of soil behaviour”, International Journal of Numerical and Analytical Methods in Geomechanics, vol. 14, no. 3, pp. 151-190, 1990, doi: 10.1002/nag.1610140302.
  • [16] M. Pastor, O.C. Zienkiewicz, and K.H. Leung, “A simple model for transient soil loading in earthquake analysis. II: Non-associative model for sands”, International Journal of Numerical and Analytical Methods in Geomechanics, vol. 9, no. 5, pp. 477-498, 1985, doi: 10.1002/nag.1610090506.
  • [17] O.C. Zienkiewicz and Z. Mróz, “Generalized plasticity formulation and application to geomechanics”, in Mechanics of Engineering Materials, C. S. Desai and R. H. Gallagher, Eds. New York: John Wiley and Sons, 1984.
  • [18] O.C. Zienkiewicz, K.H. Leung, and M. Pastor, “A simple model for transient soil loading in earthquake analysis. I: Basic model and its application”, International Journal of Numerical and Analytical Methods in Geomechanics, vol. 9, no. 5, pp. 953-976, 1985, doi: 10.1002/nag.1610090505.
  • [19] F. Darve and S. Labanieh, “Incremental constitutive law for sands and clays: simulation of monotonic and cyclic tests”, International Journal of Numerical and Analytical Methods in Geomechanics, vol. 6, no. 2, pp. 243-275, 1982, doi: 10.1002/nag.1610060209.
  • [20] F. Darve, “Incrementally non-linear constitutive relationships”, in Geomaterials constitutive equations and modelling, F. Darve, Ed. London: Elsevier Applied Science, 1990, pp. 213-238, doi: 10.1201/9781482296532.
  • [21] D. Kolymbas, “An outline of hypoplasticity”, Archive of Applied Mechanics, vol. 61, pp. 143-151, 1991, doi: 10.1007/BF00788048.
  • [22] W. Wu and A. Niemunis, ”Failure criterion, flow rule and dissipation function derived from hypoplasticity”, Mechanics of Cohesive-Frictional Materials, vol. 1, no. 2, pp. 145-163, 1996, doi: 10.1002/(SICI)1099-1484(199604)1:2<145::AID-CFM8>3.0.CO;2-9.
  • [23] A. Casagrande, “Characteristics of cohesionless soils affecting the stability of earth fills”, Journal of Boston Society of Civil Engineers, vol. 23, pp. 257-276, 1936.
  • [24] S.J. Poulos, “The steady state of deformation”, Journal of Geotechnical Engineering Division, vol. 107, no. 5, pp. 553-562, 1981, doi: 10.1061/AJGEB6.0001129.
  • [25] K. Been, M.G. Jefferies, and J. Hachey, “The critical states of sands”, Géotechnique, vol. 41, no. 3, pp. 365-381, 1991, doi: 10.1680/geot.1991.41.3.365.
  • [26] J. A. Sladen, R.D. D’Hollander, and J. Krahn, “The liquefaction of sands, a collapse surface approach”, Canadian Geotechnical Journal, vol. 22, no. 4, pp. 564-578, 1985, doi: 10.1139/t85-076.
  • [27] Y.P. Vaid, E.K.F. Chung, and R.H. Kuerbis, “Stress path and steady state”, Canadian Geotechnical Journal, vol. 27, no. 1, pp. 1-7, 1990, doi: 10.1139/t90-001.
  • [28] R. Verdugo and K. Ishihara, “The steady state of sandy soils”, Soils and Foundations, vol. 36, no. 2, pp. 81-91, 1996, doi: 10.3208/sandf.36.2_81.
  • [29] A. Casagrande, “Liquefaction and cyclic deformation of sands, a critical review”, in Proceedings of the 5th Pan-American Conference on Soil Mechanics and Foundation Engineering, Harvard Soil Mechanics Series, no. 88. Cambridge: Harvard University, 1979, pp. 79-133.
  • [30] M.B. de Groot, M.D. Bolton, P. Foray, P. Meijers, A.C. Palmer, R. Sandven, A. Sawicki, and T.C. Teh, “Physics of liquefaction phenomena around marine structures”, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol. 132, no. 4, pp. 227-243, 2006, doi: 10.1061/(ASCE)0733-950X(2006)132:4(227).
  • [31] K. Ishihara, F. Tatsuoka, and V. Yasuda, “Undrained deformation and liquefaction of sand under cyclic stresses”, Soils and Foundations, vol. 15, no. 1, pp. 29-44, 1975, doi: 10.3208/sandf1972.15.29.
  • [32] D.C. Drucker, R.E. Gibson, and D.J. Henkel, “Soil mechanics and work-hardening theories of plasticity”, Transactions of ASCE, vol. 122, no. 1, pp. 338-346, 1957, doi: 10.1061/TACEAT.0007430.
  • [33] D. Muir Wood, Geotechnical modelling. London and New York: Spon Press Taylor & Francis Group, 2004, doi: 10.1201/9781315273556.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-accc33e9-cebf-4e1c-9d67-9cbe5e0733fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.