PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mushrooms as biomonitors of heavy metals contamination in forest areas

Identyfikatory
Warianty tytułu
PL
Grzyby jako biomonitory zanieczyszczenia terenów leśnych metalami ciężkimi
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to assess the level of contamination with heavy metals (manganese, iron, nickel, copper, zinc, cadmium and lead) in two forest areas selected in different places in Poland: the first one in the Swietokrzyskie Province (forests of the Staporkow Forest Division) and the second one in the Opolskie Province (forests of the Kup Forest Division). The degree of contamination of these forest areas with analytes was found using edible large-fruited mushrooms naturally occurring there - the research was carried out using passive biomonitoring method. Heavy metals in mushrooms (separately in stems and hats) as well as in soil samples were determined by atomic absorption spectrometry with excitation in flame (F-AAS). The obtained results were interpreted by assessing the degree of contamination of forest areas on the basis of concentrations of heavy metals in mushrooms. The obtained results indicate an increased accumulation of heavy metals in hats than in mushrooms stems. On the basis of the obtained data, significant contamination of forest areas with selected heavy metals was also found. This is confirmed by the possibility of using mushrooms as biomonitors in passive biomonitoring of forest areas, which are heavy metal accumulators. In the interpretation of the test results, the phytocumuling factor (PF) was also used. The degree of accumulation of heavy metals, from given forest areas - from soil to mushrooms - was assessed on the basis of determined PF coefficients. In addition, good bioavailability of the analysed analytes by mushrooms was found. Additionally, on the basis of the conducted studies, the possibility of mushroom consumption was assessed - they are not suitable for consumption due to the fact that the permissible concentration standards of heavy metals contained in mushrooms were exceeded.
Rocznik
Strony
557--568
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Institute of Biotechnology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 51
autor
  • Institute of Biotechnology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 51
Bibliografia
  • [1] Huang X, Hu J, Qin F, Quan W, Cao R, Fan M, Wu X. Heavy metal pollution and ecological assessment around the Jinsha Coal-Fired Power Plant (China). Int J Env Res Pub He. 2017;14:1589-1600. DOI: 10.3390/ijerph14121589.
  • [2] Zhang Q, Ye J, Chen J, Xu H, Wang C, Zhao M. Risk assessment of polychlorinated biphenyls and heavy metals in soils of an abandoned e-waste site in China. Environ Pollut. 2014;185:258-265. DOI: 10.1016/j.envpol.2013.11.003.
  • [3] Grodziński W, Yorks TP. Species and ecosystem level bioindicators of airborn pollution an analysis of two major studies. Water Air Soil Pollut. 1981;16(1):33-53. https://link.springer.com/article/10.1007/BF01047040.
  • [4] Dołhańczuk-Śródka A, Ziembik Z, Wacławek M, Hyšplerová L. Transfer of cesium-137 from forest soil to moss Pleurozium schreberi. Ecol Chem Eng S. 2011;18(4):509-516. https://drive.google.com/file/d/1-yytkc9anjcjUlKQvfujbca9BZJz_fG5/view.
  • [5] Szczerbińska N, Gałczyńska M. Biological methods used to assess surface water quality. Arch Pol Fish. 2015;23:185-196. DOI: 10.1515/aopf-2015-0021.
  • [6] Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke WJ, et al. The origin of heavy metals and radionuclides accumulated in the soil and biota samples collected in Svalbard, near Longyearbyen. Ecol Chem Eng S. 2017;24(2):223-238. DOI: 10.1515/eces-2017-0015.
  • [7] Rajfur M, Krems P, Kłos A, Kozłowski R, Jóźwiak MA, Kříž J, et al. Application of algae in active biomonitoring of the selected holding reservoirs in Swietokrzyskie Province. Ecol Chem Eng S. 2016;23(2):237-247. DOI: 10.1515/eces-2016-0016.
  • [8] Laureysens I, Blust R, Temmerman L, Lemmens C, Ceulemans R. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. I. Seasonal variation in leaf, wood and bark concentrations. Environ Pollut. 2004;131(3):485-494. DOI: 10.1016/j.envpol.2004.02.009.
  • [9] Yilmaz S, Zengin M. Monitoring environmental pollution in Erzurum by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environ Internat. 2004;29:1041-1047. DOI: 10.1016/S0160-4120(03)00097-7.
  • [10] Rusu AM, Jones GC, Chimonides PDJ, Purvis OW. Biomonitoring using the lichen Hypogymnia physodes and bark samples near Zlatna, Romania immediately following closure of a copper ore-processing plant. Environ Pollut. 2006;143(1):81-88. DOI: 10.1016/j.envpol.2005.11.002.
  • [11] Kosior G, Samecka-Cymerman A, Kolon K, Kempers AJ. Bioindication capacity of metal pollution of native and transplanted Pleurozium schreberi under various levels of pollution. Chemosphere. 2010;81(3):321-326. DOI: 10.1016/j.chemosphere.2010.07.029.
  • [12] Korzeniowska J, Panek E. The content of trace metals (Cd, Cr, Cu, Ni, Pb, Zn) in selected plant species (moss Pleurozium schreberi, dandelion Taraxacum officianale, spruce Picea abies) along the road Cracow -Zakopane. Geomatics Environ Eng. 2012;6(1):43-50. DOI: 10.7494/geom.2012.6.1.43.
  • [13] Olszowski T, Tomaszewska B, Goralna-Włodarczyk K. Air quality in non-industrialised area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase. Atmos Environ. 2012;50:139-147. DOI: 10.1016/j.atmosenv.2011.12.049.
  • [14] Arasimowicz M, Niemiec M, Wiśniowska-Kielian B. Zinc, copper and chromium content in soils and needles of the scots pine (Pinus silvestris L.) from the Krakow agglomeration terrain. Ecol Chem Eng A. 2010;17(12):1543-1552. https://drive.google.com/drive/folders/1FWQVyuwK4uCVNd_ejuKD9tjh7j0dOzMh.
  • [15] Sager M. The honey as a bioindicator of the environment. Ecol Chem Eng S. 2017;24(4):583-594. DOI: 10.1515/eces-2017-0038.
  • [16] Kirk PM, Cannon PF, David JC, Stalpers JA. Ainsworth & Brisby’s Dictionary of the Fungi. 10th edn. Wallingford: CAB International; 2008. ISBN: 9780851998268.
  • [17] Chang ST. Global impact of edible and medicinal mushrooms on human welfare in the 21 century, non-green revolution. Int J Med Mushrooms. 1999;1:1-7. DOI: 10.1615/IntJMedMushrooms.v1.i1.10.
  • [18] Siwulski M, Sobieralski K, Sas-Golak I. Wartość odżywcza i prozdrowotna grzybów (Nutrition and Health Values of Mushrooms). Żywn Nauk Technol Jakość. 2014;92(1):16-28. DOI: 10.15193/zntj/2014/92/016-028.
  • [19] Grzywacz A. Problemy użytkowania jadalnych grzybów w polskich lasach (Problems with the use of edible mushrooms from Polish woods). Zarządz Ochr Przyr Las. 2010;4:56-79. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-5b1dae90-40ce-4793-92d9-b3b6493bade0/c/Problemy_u_ytkowania_jadalnych_grzybow_w_polskich_lasach.pdf.
  • [20] Marzuki A, Ying SY. Environmental monitoring and controlling system for mushroom farm with online interface. Inter J Computer Sci Infor Technol. 2017;9(4):17-28. DOI: 10.5121/ijcsit.2017.9402.
  • [21] Koroleva Y, Vakhranyova O, Okhrimenko M. Accumulation of trace elements by wild mushrooms in West part of Russia (South-Eastern Baltic). Pollut Atmos. 2015;226:1-10. DOI: 10.4267/pollution-atmospherique.4989.
  • [22] Altıntığ E, Emre Hişir M, Altundağ H. Determination of Cr, Cu, Fe, Ni, Pb and Zn by ICP-OES in mushroom samples from Sakarya, Turkey. Sakarya University J Sci. 2017;21(3):496-504. DOI: 10.16984/saufenbilder.283292.
  • [23] Niemiec M, Chowaniak M, Paluch Ł. Accumulation of chromium, aluminum, barium and arsenic in selected elements of a forest ecosystem in the Przedbabiogórskie Mountain Range in the Western Carpathians. J Elem. 2017;22(3):1107-1116. DOI: 10.5601/jelem.2017.22.1.1341.
  • [24] Lasy Nadleśnictwa Stąporków (Woods of the Staporkow Forest Division). http://www.staporkow.radom.lasy.gov.pl/widget/lasy-nadlesnictwa/-/101_INSTANCE_1M8a#WbjcndFpxPY..
  • [25] Lasy Nadleśnictwa Kup (Woods of the Kup Forest Division). http://www.kup.katowice.lasy.gov.pl/lasy-nadlesnictwa/-/asset_publisher/1M8a/content/nasze-lasy#.WbjdddFpxPY.
  • [26] iCE 3000 Series AA Spectrometers Operators Manuals. Cambridge: Thermo Fisher Scientific; 2011. http://photos.labwrench.com/equipmentManuals/9291-6306.pdf.
  • [27] Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF.
  • [28] Rozporządzenie Ministra Środowiska z dnia 1 września 2016 roku w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi. Dz.U. 2016, poz. 1395. (Regulation of the Minister of Environment of 1 September 2016 on the methods of assessment of soil surface pollution level, Official J 2016, item 1395). http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20160001395/O/D20161395.pdf.
  • [29] Širić I, Humar M, Kasap A, Kos I, Mioč B, Pohleven F. Heavy metal bioaccumulation by wild edible saprophyticand ectomycorrhizal mushrooms. Environ Sci Pollut Res. 2016;23:18239-18252. DOI: 10.1007/s11356-016-7027-0.
  • [30] Amadi N, Tanee FBG, Osuji JO. Correlating zinc phytoaccumulation of Cyperus iria Linn with soil chemical parameters in a metal contaminated soil amended with orange peels. J Advances in Biol Biotechnol. 2017;16(1):1-17. DOI: 10.9734/JABB/2017/37205.
  • [31] Juang KW, Lee YI, Lai HY, Wang CH, Chen BC. Copper accumulation, translocation and toxic effects in grapevine cuttings. Environ Sci Pollut R. 2012;19(4):1315-1322. DOI: 10.1007/s11356-011-0657-3.
  • [32] Mleczek M, Siwulski M, Stuper-Szablewska K, Rissmann I, Sobieralski K, Goliński P. Accumulation of elements by edible mushroom species: Part I. Problem of trace element toxicity in mushrooms. J Environ Sci Heal B. 2013;48(1):69-81. DOI: 10.1080/03601234.2012.716733.
  • [33] Ndimele CC, Ndimele PE, Chukwuka KS. Accumulation of heavy metals by wild mushrooms in Ibadan, Nigeria. J Health Pollut. 2017;7(16):26-30. DOI: 10.5696/2156-9614-7.16.26.
  • [34] Rashid MH, Rahman MM, Correll R, Naidu R. Arsenic and other elemental concentrations in mushrooms from Bangladesh: Health Risks. Int J Env Res Pub Health. 2018;15(919):1-18. DOI: 10.3390/ijerph15050919.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acca15d1-69f5-49e5-84d9-2ecc496af05f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.