PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wear performance of Ti-6Al-4 V titanium alloy through nano-doped lubricants

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Titanium and its alloys are widely utilized in the biomedical sector, they still exhibit poor tribological properties and low wear resistance when employed against even weaker substances. The poor hardness, instability, high coefficient of friction, low load-carrying capacity, and insufficient resistance to not only abrasive but also adhesive wear are further disadvantages of titanium alloys. The focus of this investigation is on the tribological performance of Ti-6Al-4 V alloy in contact with WC carbide abrasive balls when subjected to nanodoped cooling and lubrication conditions. Tribological experiments were executed on Ti-6Al-4 V flat samples using a ball-on-flat tribometer in dry hybrid graphene/boron nitride combination nanoparticles (MQL, nano-3), nanographene with MQL (nano-1), and boron nitride with MQL (nano-2) conditions. After that, the most significant tribological characteristics were investigated, including volume loss, friction coefficient, wear rate, and micrographic structures. The outcomes also demonstrated that the hybrid nanoparticle situation experienced the least amount of volume loss.
Rocznik
Strony
art. no. e147, 2023
Opis fizyczny
Bibliogr. 48 poz., fot., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, Karabük University, Karabük, Turkey
  • Mechanical Engineering Department, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
  • Department of Mechanical Engineering, Karabük University, Karabük, Turkey
  • Department of Mechanical Engineering, Karabük University, Karabük, Turkey
  • Department of Mechanical Engineering, Karabük University, Karabük, Turkey
  • Faculty of Mechanical Engineering, Opole University of Technology, 76 Proszkowska St., 45-758 Opole, Poland
  • Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttrakhand, India
  • Faculty of Mechanical Engineering, Opole University of Technology, 76 Proszkowska St., 45-758 Opole, Poland
  • Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu 602105, India
Bibliografia
  • 1. Shin Y, Wada K, Tsuchida Y, Ijbara M, Ikeda M, Takahashi H, Iwamoto T. Wear behavior of materials for additive manufacturing after simulated occlusion of deciduous dentition. J Mech Behav Biomed Mater. 2023;138:105627. https:// doi. org/ 10. 1016/j. jmbbm.2022.105627.
  • 2. Wang J, Zhuang W, Liang W, Yan T, Li T, Zhang L, Li S. Inorganic nanomaterial lubricant additives for base flu- ids, to improve tribological performance: recent develop- ments. Friction. 2022;10:645–76. https:// doi. org/ 10. 1007/ s40544-021-0511-7.
  • 3. Godson L, Deepak K, Enoch C, Jefferson B, Raja B. Heat trans- fer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Arch Civ Mech Eng. 2014;14:489–96. https:// doi.org/10.1016/j.acme.2013.08.002.
  • 4. Li A, Zhang R, Liu J, Song X. Effect of cutting process adjust- ment on crystallographic texture of machined surface layer of titanium alloy. Arch Civ Mech Eng. 2022;23:19. https://doi.org/ 10.1007/s43452-022-00563-w.
  • 5. Wang Y, Tayyebi M, Assari A. Fracture toughness, wear, and microstructure properties of aluminum/titanium/steel multi-lam- inated composites produced by cross-accumulative roll-bonding process. Arch Civ Mech Eng. 2022;22:49. https://doi.org/10.1007/ s43452-021-00355-8.
  • 6. Philip JT, Mathew J, Kuriachen B. Tribology of Ti6Al4V: a review. Friction. 2019;7:497–536. https:// doi. org/ 10. 1007/ S40544-019-0338-7.
  • 7. Djoufack MH, May U, Repphun G, Brögelmann T, Bobzin K. Wear behaviour of hydrogenated DLC in a pin-on-disc model test under lubrication with different diesel fuel types. Tribol Int. 2015;92:12–20. https://doi.org/10.1016/j.triboint.2015.05.020.
  • 8. Jakobsen MO, Herskind ES, Bjerge K, Ahrendt P, Pedersen CF, Knudsen MB. Vibration signatures in ball bearings as a function of lubricant viscosity ratio κ, under alternating lubrication condi- tions. Tribol Int. 2021;156:106840. https://doi.org/10.1016/j.tribo int.2020.106840.
  • 9. Gupta MK, Demirsöz R, Korkmaz ME, Ross NS. Wear and fric- tion mechanism of stainless steel 420 under various lubrication conditions: a tribological assessment with ball on flat test. J Tri- bol. 2023. https://doi.org/10.1115/1.4056423.
  • 10. Dwyer-Joyce R. Predicting the abrasive wear of ball bearings by lubricant debris. Wear. 1999;233–235:692–701. https://doi.org/ 10.1016/S0043-1648(99)00184-2.
  • 11. Han X, Thrush SJ, Zhang Z, Barber GC, Qu H. Tribological characterization of ZnO nanofluids as fastener lubricants. Wear. 2021;468–469:203592. https:// doi. org/ 10. 1016/j. wear. 2020. 203592.
  • 12. Şirin Ş, Kıvak T. Effects of hybrid nanofluids on machining performance in MQL-milling of Inconel X-750 superalloy. J Manuf Process. 2021;70:163–76. https:// doi. org/ 10. 1016/j. jmapro.2021.08.038.
  • 13. Yıldırım ÇV. Investigation of hard turning performance of eco- friendly cooling strategies: cryogenic cooling and nanofluid based MQL. Tribol Int. 2020;144:106127. https:// doi. org/ 10. 1016/j.triboint.2019.106127.
  • 14. Nadolny K, Kieraś S. New approach for cooling and lubrication in dry machining on the example of internal cylindrical grind- ing of bearing rings. Sustain Mater Technol. 2020;24:e00166. https://doi.org/10.1016/j.susmat.2020.e00166.
  • 15. Zhang D, Du X, Bai A, Wang L. The synergistic effect of MAO- treated and PAO–graphene oil on tribological properties of Ti6Al4V alloys. Wear. 2022;510–511:204494. https://doi.org/ 10.1016/j.wear.2022.204494.
  • 16. Rapoport L, Leshchinsky V, Lapsker I, Volovik Y, Nepomn- yashchy O, Lvovsky M, Popovitz-Biro R, Feldman Y, Tenne R. Tribological properties of WS2 nanoparticles under mixed lubrication. Wear. 2003;255:785–93. https:// doi. org/ 10. 1016/ S0043-1648(03)00044-9.
  • 17. Sasaki A, Kawai S, Honda T, Iwai Y. Measurement of the poten- tial of static electricity generated by the friction of oil lubricated metal on metal. Tribol Trans. 2002;45:55–60. https://doi.org/10. 1080/10402000208982521.
  • 18. Wu YY, Tsui WC, Liu TC. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear. 2007;262:819–25. https://doi.org/10.1016/j.wear.2006.08.021.
  • 19. Cui X, Li C, Zhang Y, Jia D, Zhao Y, Li R, Cao H. Tribological properties under the grinding wheel and workpiece interface by using graphene nanofluid lubricant. Int J Adv Manuf Technol. 2019;104:3943–58.
  • 20. Wan Q, Jin Y, Sun P, Ding Y. Tribological behaviour of a lubri- cant oil containing boron nitride nanoparticles. Procedia Eng. 2015;102:1038–45. https://doi.org/10.1016/j.proeng.2015.01. 226.
  • 21. Mohan N, Sharma M, Singh R, Kumar N. Tribological prop- erties of automotive lubricant SAE 20W–40 containing nano- Al2O3 particles. SAE 2014 Int Powertrain Fuels Lubr Meet. 2014. https://doi.org/10.4271/2014-01-2781.
  • 22. An J, Shen XX, Lu Y, Liu YB. Microstructure and tribological properties of Al–Pb alloy modified by high current pulsed elec- tron beam. Wear. 2006;261:208–15. https://doi.org/10.1016/j. wear.2005.09.014.
  • 23. Liu YZ, Zu XT, He X, Qiu SY, Cao J, Huang XQ. Improvement of tribological behavior of a Ti–Al–Zr alloy by nitrogen ion implantation. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms. 2006;248:42–6. https://doi.org/10.1016/j. nimb.2006.03.180.
  • 24. Gao T, Li C, Zhang Y, Yang M, Jia D, Jin T, Hou Y, Li R. Dis- persing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int. 2019;131:51–63. https://doi.org/10.1016/j.triboint.2018.10.025.
  • 25. Guo Y, Zhang L, Zhao F, Li G, Zhang G. Tribological behaviors of novel epoxy nanocomposites filled with solvent-free ionic SiO2 nanofluids. Compos Part B Eng. 2021;215:108751. https:// doi.org/10.1016/j.compositesb.2021.108751.
  • 26. Liu M, Zhang Z, Yang M, Li P, Wang Y, He Y, Yuan J. Novel design of MXene@UiO-66-NH2 hybrid nanofluids towards pro- moting the mechanical and tribological performance of fabric composites. Compos Part A Appl Sci Manuf. 2022;161:107122. https://doi.org/10.1016/j.compositesa.2022.107122.
  • 27. Mousavi SB, ZeinaliHeris S, Estellé P. Viscosity, tribological and physicochemical features of ZnO and MoS2 diesel oil-based nanofluids: an experimental study. Fuel. 2021;293:120481. https://doi.org/10.1016/j.fuel.2021.120481.
  • 28. Korkmaz ME, Gupta MK, Demirsöz R. Understanding the lubrication regime phenomenon and its influence on tribologi- cal characteristics of additively manufactured 316 Steel under novel lubrication environment. Tribol Int. 2022;173:107686. https://doi.org/10.1016/j.triboint.2022.107686.
  • 29. Sui T, Song B, Zhang F, Yang Q. Effect of particle size and ligand on the tribological properties of amino functionalized hairy silica nanoparticles as an additive to polyalphaolefin. J Nanomater. 2015;2015:1–9. https:// doi. org/ 10. 1155/ 2015/ 492401.
  • 30. Hegab H, Umer U, Deiab I, Kishawy H. Performance evalua- tion of Ti–6Al–4V machining using nano-cutting fluids under minimum quantity lubrication. Int J Adv Manuf Technol. 2018;95:4229–41. https://doi.org/10.1007/s00170-017-1527-z.
  • 31. Deepika. Nanotechnology implications for high performance lubricants. SN Appl Sci. 2020;2:1128. https://doi.org/10.1007/ s42452-020-2916-8.
  • 32. Li Z, Xu C, Xiao G, Zhang J, Chen Z, Yi M. Lubrication perfor- mance of graphene as lubricant additive in 4-n-pentyl-4’-cyano- biphyl Liquid Crystal (5CB) for Steel/Steel contacts. Materials (Basel). 2018. https://doi.org/10.3390/ma11112110.
  • 33. Ayala V, Corma A, Iglesias M, Rincón JA, Sánchez F. Boron nitride powder—a high-performance alternative for solid lubri- cation. J Catal. 2004;224:170–7.
  • 34. Chen Y, Renner P, Liang H. Dispersion of nanoparticles in lubricating oil: a critical review. Lubricants. 2019;7:7. https:// doi.org/10.3390/lubricants7010007.
  • 35. Yang W, He X, Li H, Dong J, Chen W, Xin H, Jin Z. A tribo- logical investigation of SLM fabricated TC4 titanium alloy with carburization pre-treatment. Ceram Int. 2020. https://doi.org/10. 1016/j.ceramint.2019.10.004.
  • 36. Mehrali M, Sadeghinezhad E, TahanLatibari S, Mehrali M, Togun H, Zubir MNM, Kazi SN, Metselaar HSC. Prepara- tion, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J Mater Sci. 2014;49:7156–71. https://doi.org/10.1007/s10853-014-8424-8.
  • 37. Elsaid K, Abdelkareem MA, Maghrabie HM, Sayed ET, Wilber- force T, Baroutaji A, Olabi AG. Thermophysical properties of graphene-based nanofluids. Int J Thermofluids. 2021. https:// doi.org/10.1016/j.ijft.2021.100073.
  • 38. Zhang J, Wu W, Li C, Yang M, Zhang Y, Jia D, Hou Y, Li R, Cao H, Ali HM. Convective heat transfer coefficient model under nanofluid minimum quantity lubrication coupled with cry- ogenic air grinding Ti–6Al–4V. Int J Precis Eng Manuf Technol. 2021;8:1113–35. https://doi.org/10.1007/s40684-020-00268-6.
  • 39. Tang C, Bando Y, Huang Y, Zhi C, Golberg D. Synthetic routes and formation mechanisms of spherical boron nitride nanopar- ticles. Adv Funct Mater. 2008;18:3653–61.
  • 40. Cao-Romero-Gallegos JA, Farfan-Cabrera LI, Pérez-González J, Marín-Santibáñez BM. Tribological and rheological evaluation of a graphene nanosheets-based lubricant for metal-on-metal and wet clutch interfaces. Mater Lett. 2022;309:131441. https:// doi.org/10.1016/j.matlet.2021.131441.
  • 41. Vallejo JP, Żyła G, Ansia L, Fal J, Traciak J, Lugo L. Ther- mophysical, rheological and electrical properties of mono and hybrid TiB2/B4C nanofluids based on a propylene glycol: water mixture. Powder Technol. 2022;395:391–9. https://doi.org/10. 1016/j.powtec.2021.09.074.
  • 42. Zhang Y, Li C, Jia D, Zhang D, Zhang X. Experimental evalua- tion of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J Clean Prod. 2015;87:930– 40. https://doi.org/10.1016/j.jclepro.2014.10.027.
  • 43. Kim SH. Understanding the role of nanoparticles in nano- oil lubrication. Tribol Lett. 2009. https:// doi. org/ 10. 1007/ s11249-009-9441-7.
  • 44. Singh A, Chauhan P, Mamatha TG. A review on tribological performance of lubricants with nanoparticles additives. Mater Today Proc. 2019;25:586–91. https://doi.org/10.1016/j.matpr. 2019.07.245.
  • 45. Sun J, Du S. Application of graphene derivatives and their nano- composites in tribology and lubrication: a review. RSC Adv. 2019;9:40642–61. https://doi.org/10.1039/c9ra05679c.
  • 46. Kimura Y, Wakabayashi T, Okada K, Wada T, Nishikawa H. Boron nitride as a lubricant additive. Wear. 1999;232:199–206. https://doi.org/10.1016/S0043-1648(99)00146-5.
  • 47. Demirsöz R, Korkmaz ME, Gupta MK. A novel use of hybrid Cryo-MQL system in improving the tribological characteristics of additively manufactured 316 stainless steel against 100 Cr6 alloy. Tribol Int. 2022;173:107613. https:// doi. org/ 10. 1016/j. triboint.2022.107613.
  • 48. Setti D, Sinha MK, Ghosh S, Rao PV. Performance evaluation of Ti–6Al–4V grinding using chip formation and coefficient of friction under the influence of nano fluids. Int J Mach Tools Manuf. 2015;88:237–48. https://doi.org/10.1016/j.ijmachtools. 2014.10.005.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acc334e5-f1da-4e42-b877-9dea7ac2e117
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.