PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synergistic emulsification of polyetheramine/nanofluid system as a novel viscosity reducer of acidic crude oil

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oil is a critical raw material for energy and industry, the depletion of conventional oil reserves necessitates efficient extraction and production of unconventional resources like acidic crude oil. However, its high viscosity poses significant challenges for transportation and processing. To address these challenges, this study developed a novel emulsion viscosity reducer. We designed a nanofluid based on a synergistic polyetheramine/nanofluid system consisting of alkyl ethoxy polyglycosides (AEG) as a green surfactant, SiO2 nanoparticles, and an organic alkali polyetheramine. The mixture was evaluated for its viscosity reduction and emulsification performance with acidic crude oi obtained from Qinghe oil production plant in Shengli Oilfield. The results showed that the optimized viscosity reducer achieved a remarkable reduction rate of 98.1% at 50◦C in crude oil viscosity from 6862 mPa·s to 129 mPa·s. This demonstrated the reducer effectively transformed acidic crude oil into a low viscosity oil-in-water (O/W) emulsion with high stability. Furthermore, the core imbibition simulation tests demonstrated that the viscosity reducer could improve the recovery of acidic crude oil from 29.6% to 49.4%, indicating the potential application of the optimized viscosity reducer in the exploitation of acidic crude oil. In conclusion, this study developed a novel emulsion viscosity reducer, which can reduce the viscosity and improve recovery of acidic crude oil by emulsifying into O/W emulsion. The optimized formula has potential for practical application in the exploitation of acidic crude oil.
Wydawca
Rocznik
Strony
107--119
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of Collid and Interface Chemistry, Ministry of Education, Shandong University Jinan, China
autor
  • Key Laboratory of Collid and Interface Chemistry, Ministry of Education, Shandong University Jinan, China
autor
  • Key Laboratory of Collid and Interface Chemistry, Ministry of Education, Shandong University Jinan, China
autor
  • Key Laboratory of Collid and Interface Chemistry, Ministry of Education, Shandong University Jinan, China
Bibliografia
  • [1] Mirchi A, Hadian S, Madani K, Rouhani OM, Rouhani AM. World energy balance outlook and OPEC production capacity: implications for global oil security. Energies 2012;5(8): 2626–51. doi: 10.3390/en5082626
  • [2] Laherrère J, Hall CAS, Bentley R. How much oil remains for the world to produce? Comparing assessment methods, and separating fact from fiction. Curr. Res. Environ. Sustainability 2022;4: 100174. doi: 10.1016/j.crsust.2022.100174
  • [3] Bentley RW, Mushalik M, Wang J. The resource-limited plateau in global conventional oil production: analysis and consequences. Biophys. Econ. Sustainability. 2020;5: 1–22. doi: 10.1007/s41247-020-00076-1
  • [4] Meng QY, Bentley RW. Global oil peaking: Responding to the case for ‘abundant supplies of oil’. Energy 2008; 33(8): 1179–84. doi: 10.1016/j.energy.2008.04.001
  • [5] Zhou W, Xin C, Chen Y, Mouhouadi RD, Chen S. Nanoparticles for enhancing heavy oil recovery: recent progress, challenges, and future perspectives. Energy Fuels 2023;37(12): 8057–78. doi: 10.1021/acs.energyfuels.3c00684
  • [6] Alboudwarej H, Felix J, Taylor S, Badry R, Bremner C, Brough B, et al. Highlighting heavy oil. Oilfield Rev. 2006;18(2): 34–53.
  • [7] Barros EV, Filgueiras PR, Lacerda V, Rodgers RP, Romão W. Characterization of naphthenic acids in crude oil samples – A literature review. Fuel 2022;319: 123775. doi: 10.1016/j.fuel.2022.123775
  • [8] Wu C, De Visscher A, Gates ID. On naphthenic acids removal from crude oil and oil sands process-affected water. Fuel 2019;253: 1229–46. doi: 10.1016/j.fuel.2019.05.091
  • [9] Yang C, Zhang G, Serhan M, Koivu G, Yang Z, Hollebone B, et al. Characterization of naphthenic acids in crude oils and refined petroleum products. Fuel 2019;255: 115849. doi: 10.1016/j.fuel.2019.115849
  • [10] Elsamani IAO, Mustafa MA. Reduction of naphthenic acids in high TAN crude oil using fluid catalytic cracking catalyst. Pet. Sci. Technol. 2017;36(1): 62–67 doi: 10.1080/10916466.2017.1403454
  • [11] Guo K, Li H, Yu Z. In-situ heavy and extra-heavy oil recovery: A review. Fuel 2016;185: 886–902. doi: 10.1016/j.fuel.2016.08.047
  • [12] Martínez-Palou R, Cerón-Camacho R, Chávez B, Vallejo AA, Villanueva-Negrete D, Castellanos J, et al. Demulsification of heavy crude oil-in-water emulsions: A comparative study between microwave and thermal heating. Fuel 2013;113: 407–14. doi: 10.1016/j.fuel.2013.05.094
  • [13] Chowdhury S, Shrivastava S, Kakati A, Sangwai JS. Comprehensive Review on the Role of Surfactants in the Chemical Enhanced Oil Recovery Process. Ind. Eng. Chem. Res. 2022;61(1): 21–64. doi: 10.1021/acs.iecr.1c03301
  • [14] Al-Azani K, Abu-Khamsin S, Al-Abdrabalnabi R, Kamal MS, Patil S, Zhou X, et al. Oil recovery performance by surfactant flooding: a perspective on multiscale evaluation methods. Energy Fuels. 2022;36(22): 13451–78. doi: 10.1021/acs.energyfuels.2c02544
  • [15] Kalam S, Abu-Khamsin SA, Patil S, Mahmoud M, Kamal MS, Murtaza M, et al. Adsorption reduction of a gemini surfactant on carbonate rocks using formic acid: Static and dynamic conditions. Fuel 2023;345: 128166. doi: 10.1016/j.fuel.2023.128166
  • [16] Kalam S, Abu-Khamsin SA, Kamal MS, Patil S. A review on surfactant retention on rocks: mechanisms, measurements, and influencing factors. Fuel 2021;293: 120459. doi: 10.1016/j.fuel.2021.120459
  • [17] Amirianshoja T, Junin R, Kamal Idris A, Rahmani O. A comparative study of surfactant adsorption by clay minerals. J. Pet. Sci. Eng. 2013;101: 21–7. doi: 10.1016/j.petrol.2012.10.002
  • [18] Asl FO, Zargar G, Manshad AK, Iglauer S, Keshavarz A. Experimental investigation and simulation for hybrid of nanocomposite and surfactant as EOR process in carbonate oil reservoirs. Fuel 2022;319: 123591. doi: 10.1016/j.fuel.2022.123591
  • [19] Yang Y, Guo J, Cheng Z, Wu W, Zhang J, Zhang J, et al. New composite viscosity reducer with both asphaltene dispersion and emulsifying capability for heavy and ultraheavy crude oils. Energy Fuels 2017;31(2): 1159–73. doi: 10.1021/acs.energyfuels.6b02265
  • [20] Douglas LD, Rivera-Gonzalez N, Cool N, Bajpayee A, Udayakantha M, Liu G-W, et al. A Materials Science Perspective of Midstream Challenges in the Utilization of Heavy Crude Oil. ACS Omega. 2022;7(2): 1547–74. doi: 10.1021/acsomega.1c06399
  • [21] Neubauer E, Hincapie RE, Borovina A, Biernat M, Clemens T, Ahmad YK, editors. Influence of nanofluids on wettability changes and interfacial tension reduction. Society of Petroleum Engineers – SPE Europec Featured at 82nd EAGE Conference and Exhibition; 2020.
  • [22] Yakasai F, Jaafar MZ, Bandyopadhyay S, Agi A. Current developments and future outlook in nanofluid flooding: A comprehensive review of various parameters influencing oil recovery mechanisms. J. Ind. Eng. Chem. 2021;93: 138–62. doi: 10.1016/j.jiec.2020.10.017
  • [23] Saleh S, Neubauer E, Borovina A, Hincapie RE, Clemens T, Ness D. Wettability changes due to nanomaterials and alkali—A proposed formulation for EOR. Nanomaterials. 2021;11(9): 2351. doi: 10.3390/nano11092351
  • [24] Hendraningrat L, Torsæter O. Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems. Appl. Nanosci. 2015;5(2): 181–99. doi: 10.1007/s13204-014-0305-6
  • [25] Al-Asadi A, Rodil E, Soto A. Nanoparticles in chemical EOR: a review on flooding tests. Nanomaterials 2022;12(23): 4142. doi: 10.3390/nano12234142
  • [26] Zargartalebi M, Kharrat R, Barati N. Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel 2015;143: 21–7. doi: 10.1016/j.fuel.2014.11.040
  • [27] Liu P, Yu H, Niu L, Ni D, Zhao Q, Li X, et al. Utilization of Janus-silica/surfactant nanofluid without ultra-low interfacial tension for improving oil recovery. Chem. Eng. Sci. 2020;228: 115964. doi: 10.1016/j.ces.2020.115964
  • [28] Cheraghian G. Application of nano-fumed silica in heavy oil recovery. Pet. Sci. Technol. 2016;34(1): 12–8. doi: 10.1080/10916466.2015.1114497
  • [29] Hurtado Y, Beltrán C, Zabala RD, Lopera SH, Franco CA, Nassar NN, et al. Effects of surface acidity and polarity of SiO2 nanoparticles on the foam stabilization applied to natural gas flooding in tight gas-condensate reservoirs. Energy Fuels 2018;32(5): 5824–33. doi: 10.1021/acs.energyfuels.8b00665
  • [30] He L, Lin F, Li X, Sui H, Xu Z. Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chem. Soc. Rev. 2015;44(15): 5446–94. doi: 10.1039/c5cs00102a
  • [31] Isaac OT, Pu H, Oni BA, Samson FA. Surfactants employed in conventional and unconventional reservoirs for enhanced oil recovery—A review. Energy Rep. 2022;8: 2806–30. doi: 10.1016/j.egyr.2022.01.187
  • [32] Chen S, Han M, AlSofi AM, Fahmi MM. Experimental evaluation of non-ionic mixed surfactant formulations at high-temperature and high-salinity conditions. J. Pet. Sci. Eng. 2022;219: 111084. doi: 10.1016/j.petrol.2022.111084
  • [33] Wei P, Guo K, Xie Y. Polysaccharide-stabilized oilladen foam for enhancing oil recovery. J. Pet. Sci. Eng. 2020;195: 107597. doi: 10.1016/j.petrol.2020.107597
  • [34] Wen Y, Lai N, Li W, Zhang Y, Du Z, Han L, et al. Factors influencing the stability of natural gas foam prepared by alkyl polyglycosides and its decay rules. J. Pet. Sci. Eng. 2021;196: 108039. doi: 10.1016/j.petrol.2020.108039
  • [35] Wu Q, Zheng H, Chen Y, Liu M, Bao X, Guo W. Alkylethoxyglucoside-enhanced volatile fatty acids production from waste activated sludge: Performance and mechanisms. J. Cleaner Prod. 2021;289: 125765. doi: 10.1016/j.jclepro.2020.125765
  • [36] Wang Z, Hu R, Ren G, Li G, Liu S, Xu Z, et al. Polyetheramine as an alternative alkali for alkali/surfactant/polymer flooding. Colloids Surf. A 2019;581: 123820. doi: 10.1016/j.colsurfa.2019.123820
  • [37] Umar AA, Saaid IBM, Sulaimon AA, Pilus RBM. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018;165: 673–90. doi: 10.1016/j.petrol.2018.03.014
  • [38] Olajire AA. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 2014;77: 963–82. doi: 10.1016/j.energy.2014.09.005
  • [39] Hirasaki GJ, Miller CA, Puerto M. Recent advances in surfactant EOR. SPE J. 2011;16(4): 889–907.
  • [40] Pei H, Zhang G, Ge J, Jin L, Ding L. Study on the variation of dynamic interfacial tension in the process of alkaline flooding for heavy oil. Fuel 2013;104: 372–8. doi: 10.1016/j.fuel.2012.10.022
  • [41] Chakraborty S, Panigrahi PK. Stability of nanofluid: A review. Appl. Therm. Eng. 2020;174: 115259. doi: 10.1016/j.applthermaleng.2020.115259
  • [42] Yuan F-Q, Cheng Y-Q, Wang H-Y, Xu Z-C, Zhang L, Zhang L, et al. Effect of organic alkali on interfacial tensions of surfactant solutions against crude oils. Colloids Surf. A 2015;470: 171–8. doi: 10.1016/j.colsurfa.2015.01.059
  • [43] Gbadamosi AO, Junin R, Manan MA, Agi A, Yusuff AS. An overview of chemical enhanced oil recovery: recent advances and prospects. Int. Nano Lett. 2019;9: 171–202. doi: 10.1007/s40089-019-0272-8
  • [44] Low JY, Khe CS, Usman F, Hassan YM, Lai CW, You KY, et al. Review on demulsification techniques for oil/water emulsion: Comparison of recyclable and irretrievable approaches. Environmental Research. 2024;243: 117840. doi: 10.1016/j.envres.2023.117840
  • [45] Fu L, Zhang G, Ge J, Liao K, Pei H, Jiang P, et al. Study on organic alkali-surfactant-polymer flooding for enhanced ordinary heavy oil recovery. Colloids Surf. A 2016;508: 230–9. doi: 10.1016/j.colsurfa.2016.08.042
  • [46] Wang Y, Liu H, Wang J, Dong X, Chen F. Formulation development and visualized investigation of temperature-resistant and salt-tolerant surfactant-polymer flooding to enhance oil recovery. J. Pet. Sci. Eng. 2019;174:584–98. doi: 10.1016/j.petrol.2018.11.074
  • [47] Feng H, Hou J, Ma T, Meng Z, Wu H, Yang H, et al. The ultra-low interfacial tension behavior of the combined cationic/anionic-nonionic gemini surfactants system for chemical flooding. Colloids Surf. A 2018;554: 74–80. doi: 10.1016/j.colsurfa.2018.06.028
  • [48] Sakthivel S, Abdel-Azeim S, Nair VC. Effect of nanomaterials functionality on the acidic crude oil: Wettability and oil recovery studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023;679: 132582. doi: 10.1016/j.colsurfa.2023.132582
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acbe0377-31a3-432b-aea9-6b5dd65d72fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.